在数字化浪潮席卷的今天,企业每天都在重复性任务中消耗大量时间和资源。这些繁琐的工作不仅拖慢了效率,还阻碍了创新的脚步。传统的自动化工具虽然能处理简单的流程,但面对复杂多变的任务时,往往显得力不从心。而AI Agents(人工智能代理)的出现,正以其强大的适应性和决策能力,彻底改变这一局面。
那么,2025年有哪些AI Agents工具和平台值得关注?如何选择适合自己的解决方案?本文将为你详细盘点,从开发框架到企业级平台,从低代码工具到开源方案,带你一览AI Agents的最新趋势,并提供实用建议,助你在智能化转型中抢占先机!
一、AI Agents是什么?与传统自动化有何不同?
在选择合适的AI Agents之前,我们先来搞清楚:AI Agents到底是什么?它与传统自动化工具相比,有什么独特之处?
简单来说,AI Agents是一种能够感知环境、分析数据、自主决策并采取行动的软件系统,无需持续的人工干预。与传统的规则驱动软件不同,AI Agents能够根据收集的信息进行适应性调整,并通过经验不断优化自身表现。它们的核心能力包括以下四个方面:
-
感知能力:从用户输入、传感器或数据库中获取数据。
-
决策能力:通过算法或大型语言模型(如Claude Sonnet 4)分析数据,制定决策。
-
行动能力:通过系统更新、工具调用或输出结果执行任务。
-
学习能力:根据反馈和结果不断优化自身表现。
更重要的是,现代AI Agents还能处理多模态输入,不仅限于文本,还包括图像、音频和视频。这种“类人”理解能力让它们在复杂场景中表现得更加灵活和智能。
应用场景:AI Agents的“超级能力”
AI Agents已经在各行各业展现出强大的应用价值,以下是几个典型场景:
-
客户服务:像Agentforce这样的平台能7×24小时处理客户咨询,并通过持续学习提升响应质量。
-
医疗健康:AI Agents辅助医生进行诊断,实时监控患者数据,提升诊疗效率。
-
金融行业:通过自适应算法,AI Agents能快速检测欺诈行为,驱动算法交易。
这些案例表明,AI Agents不仅仅是自动化工具,更是通过智能决策推动业务升级的“超级助手”。
二、2025年最佳AI Agents开发框架与工具
对于希望打造定制化AI Agents的团队来说,选择合适的开发框架至关重要。以下是我们精选的五款顶级开发框架和工具,涵盖从代码驱动到低代码的多种选择。
1. LangGraph:掌控全局的智能编排
LangGraph是LangChain生态中的一款专注构建可控、状态化AI Agents的框架。它拥有超过1.4万GitHub星标和每月420万次下载,深受企业青睐。例如,Klarna利用LangGraph将客户支持响应时间缩短了80%。
核心亮点:
-
状态化编排:在长时间交互中保持上下文一致性。
-
多Agent支持:支持单一、层级式、顺序式等多Agent协作。
-
LangSmith集成:内置监控和性能跟踪。
-
人工干预机制:支持审批和手动干预。
-
实时流式处理:提升用户体验的实时响应。
-
长期记忆:跨会话保持上下文。
适合人群:需要构建复杂、上下文感知型Agent的团队
推荐理由:强大的状态管理和多Agent协作能力,适合需要高度定制化的企业场景。
开源地址:https://github.com/langchain-ai/langgraph
2. AutoGen:微软的协作型多Agent框架
AutoGen是微软于2023年9月推出的多Agent对话框架,采用事件驱动架构,适合复杂协作任务。它拥有超过4.5万GitHub星标,在GAIA基准测试中表现优于单一Agent系统,Novo Nordisk等公司已将其用于数据科学工作流。
核心亮点:
-
多Agent协作:支持多个AI Agent协同解决问题。
-
事件驱动架构:处理复杂Agent间交互。
-
广泛的LLM兼容性:支持多种大型语言模型。
-
详尽文档:提供全面教程和迁移指南。
-
可扩展性:适合复杂的企业任务。
适合人群:企业和学术团队,需处理多Agent协作场景。
推荐理由:事件驱动设计让复杂任务的协作更高效。
开源地址:https://github.com/microsoft/autogen
3. CrewAI:简单高效的角色化Agent
CrewAI是一个专注于简单性和快速部署的多Agent框架,2024年初发布后迅速获得3.2万GitHub星标和近百万次月下载,广泛应用于客户服务和营销自动化。
核心亮点:
-
角色化Agent:为每个Agent分配特定职责。
-
简单部署:最少代码即可完成设置。
-
独立性强:无需复杂框架依赖。
-
协作工作流:Agent围绕共同目标协作。
适合人群:客户服务、营销团队,以及追求快速部署的团队。
推荐理由:简单易用,适合快速构建多Agent系统。
开源地址:https://github.com/crewAIInc/crewAI
4. OpenAI Agents SDK:轻量灵活的多Agent框架
OpenAI Agents SDK是2025年3月发布的一款轻量级Python框架,支持超过100种LLM,拥有1.1万GitHub星标。它以轻量设计和全面的跟踪功能著称。
核心亮点:
-
轻量设计:多Agent工作流开销低。
-
跨模型兼容:支持100+种语言模型。
-
全面跟踪:详细监控和调试功能。
-
内置安全机制:确保执行安全可靠。
适合人群:需要灵活性和安全性的Python开发者。
推荐理由:与OpenAI服务无缝集成,适合快速开发。
地址:https://openai.github.io/openai-agents-js/
5. Google Agent Development Kit (ADK):模块化高效开发
Google ADK是2025年4月发布的一款模块化框架,与Google生态(如Gemini和Vertex AI)无缝集成。它支持层级式Agent组合,仅需不到100行代码即可完成高效开发。
核心亮点:
-
Google生态集成:与Gemini和Vertex AI原生连接。
-
模块化架构:灵活的组件化开发。
-
高效开发:少量代码实现复杂功能。
-
定制工具支持:为特定场景构建专用工具。
适合人群:Google Cloud生态用户。
推荐理由:高效且与Google生态深度整合。
地址:https://google.github.io/adk-docs/
框架/工具 |
核心功能 |
适合场景 |
代表用户/集成 |
---|---|---|---|
LangGraph |
有状态代理编排、多代理协作 |
复杂交互场景 |
Klarna(客服响应时间减少80%) |
AutoGen |
多代理对话、事件驱动架构 |
企业与学术研究 |
Novo Nordisk(数据科学) |
CrewAI |
角色分工、简单部署 |
客服与营销自动化 |
广泛用于服务自动化 |
OpenAI Agents SDK |
轻量级、兼容100+ LLM |
灵活开发 |
OpenAI生态 |
Google ADK |
模块化、Google生态整合 |
快速开发 |
Google Agentspace |
这份完整版的大模型 AI 学习和面试资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】
三、最佳无代码与开源AI Agents
对于没有深厚编程经验的团队,或希望快速上手的用户,以下无代码和开源AI Agent工具提供了强大的功能和极低的入门门槛。
1. Dify:非技术用户的福音
Dify是一个拥有9.3万GitHub星标的低代码平台,通过直观的视觉界面支持数百种LLM,内置RAG、Function Calling和ReAct策略。
核心亮点:
-
拖拽式界面:无需编程即可开发Agent。
-
多LLM支持:兼容数百种语言模型。
-
内置策略:支持RAG、Function Calling等高级功能。
-
TiDB向量搜索:支持可扩展的向量数据库。
适合人群:非技术用户、初创公司和需要快速原型的团队。
推荐理由:简单易用,功能强大,适合多种业务场景。
开源地址:https://github.com/langgenius/dify
2. AutoGPT:开源Agent的先驱
AutoGPT通过将复杂目标分解为可执行子任务,开创了开源AI Agent领域。它基于OpenAI的GPT模型,支持互联网访问和API交互。
核心亮点:
-
任务分解:自动将复杂目标拆分为子任务。
-
互联网访问:独立搜索和与Web服务交互。
-
内存管理:跨会话保持上下文。
-
开源自由:完全可定制化。
适合人群:技术团队和研究人员。
推荐理由:灵活性强,适合多步骤工作流自动化。
开源地址:https://github.com/Significant-Gravitas/AutoGPT
3. n8n:无代码工作流自动化
n8n是一个开源的工作流自动化平台,支持拖拽式界面,集成多种AI服务,适合复杂业务流程的自动化。
核心亮点:
-
拖拽式界面:无需编程即可创建工作流。
-
AI集成:支持多种AI服务和模型。
-
开源平台:支持自托管和社区驱动开发。
适合人群:需要自动化复杂流程的业务团队。
推荐理由:适合多服务协作的复杂场景。
开源地址:https://github.com/n8n-io/n8n
4. Rasa:企业级对话AI
Rasa是一个开源对话AI框架,采用CALM架构,支持全面定制化,深受American Express等企业信赖。
核心亮点:
-
全面定制:可修改对话系统的任何部分。
-
CALM架构:语言理解与业务逻辑分离。
-
本地部署:确保数据隐私和安全。
适合人群:需要可扩展、私有化聊天机器人的企业。
推荐理由:适合对安全性和定制化要求高的场景。
开源地址:https://github.com/RasaHQ/rasa
5. BotPress:可视化与代码结合
BotPress结合视觉流构建器和代码钩子,支持高度定制化的聊天机器人,拥有全面的性能监控功能。
核心亮点:
-
视觉流构建器:无需编程即可设计对话。
-
代码钩子:支持高级功能定制。
-
多平台部署:支持多种消息渠道。
适合人群:需要多平台聊天机器人和分析的团队。
推荐理由:兼顾易用性和开发灵活性。
开源地址:https://github.com/botpress/botpress
工具 |
核心功能 |
适合场景 |
代表特点/案例 |
---|---|---|---|
Dify |
拖拽式构建、支持多LLM |
快速原型设计 |
企业级文档生成与分析 |
AutoGPT |
目标拆解、联网操作 |
技术团队自动化 |
开源灵活性 |
n8n |
工作流自动化、视觉化调试 |
复杂业务流程 |
支持数百API |
Rasa |
对话AI、CALM架构 |
高合规行业 |
American Express信任 |
BotPress |
视觉化流程、分析仪表板 |
多平台聊天机器人 |
可定制化与数据洞察 |
四、最佳预构建企业级AI Agents
以下平台是为大规模生产环境设计的预构建AI Agents,适合需要开箱即用和深度集成的企业。
1. Devin AI:真正的AI软件工程师
Devin AI是Cognition Labs推出的首款全能AI软件工程师,可从规划到部署完成整个开发项目。Nubank等公司报告称,其效率提升12倍,成本节约20倍。
核心亮点:
-
独立编码:自主编写、调试和部署应用。
-
实时协作:支持与开发者协同工作。
-
遗留代码迁移:擅长现代化复杂代码库。
适合人群:开发团队,遗留代码迁移场景。
推荐理由:专注开发任务,效率极高。
地址:https://devin.ai/
2. Agentforce:Salesforce的业务自动化利器
Agentforce将Salesforce的CRM优势扩展到AI Agent领域,结合生成式AI和Data Cloud,提供个性化自动化。
核心亮点:
-
CRM集成:无缝连接Salesforce数据和工作流。
-
预构建Agent:为常见业务功能提供现成解决方案。
-
低代码构建器:无需编程即可定制自动化。
适合人群:Salesforce生态用户。
推荐理由:深度集成,适合CRM驱动的业务。
地址:https://www.salesforce.com/ap/agentforce/
3. Microsoft Copilot Studio:生产力自动化
Copilot Studio为Microsoft 365用户提供低代码AI助手开发平台,ICG等公司通过其实现50万美元成本节约。
核心亮点:
-
Microsoft 365集成:跨Word、Excel等原生自动化。
-
低代码开发:业务用户可快速创建Agent。
-
Azure AI支持:访问1800+ Azure AI模型。
适合人群:Microsoft生态用户。
推荐理由:与Microsoft 365深度整合,生产力提升显著。
地址:https://www.microsoft.com/en-us/microsoft-copilot/microsoft-copilot-studio
4. IBM Watsonx Assistant:企业级安全对话AI
Watsonx Assistant结合IBM数十年AI研究经验,专注于企业级安全性和合规性,适合银行、医疗等行业。
核心亮点:
-
企业级安全:满足严格合规要求。
-
多渠道支持:支持文本和语音交互。
-
无代码对话编辑器:直观创建对话流。
适合人群:对安全性和合规性要求高的行业。
推荐理由:企业级可靠性和强大的对话能力。
地址:https://www.datacamp.com/blog/best-ai-agents
平台 |
核心功能 |
访问模式 |
定价 |
适合场景 |
主要局限 |
---|---|---|---|---|---|
Devin AI |
独立编程 |
SaaS+API |
20-500美元/月 |
开发团队 |
仅限编码任务 |
Agentforce |
业务自动化 |
Salesforce订阅 |
随Salesforce计划 |
CRM用户 |
依赖Salesforce生态 |
Copilot Studio |
生产力自动化 |
Microsoft 365订阅 |
随Microsoft 365 |
Microsoft用户 |
偏Microsoft生态 |
Watsonx Assistant |
企业对话AI |
IBM Cloud订阅 |
按使用量计费 |
高合规行业 |
部署复杂、成本较高 |
五、实施策略与最佳实践
从评估到成功部署AI Agents,需要系统化的方法,以下是一些实用建议:
1. 评估与规划
-
分析现有工作流,识别适合Agent自动化的重复性或数据密集型任务。
-
记录痛点,建立性能基线,便于后续评估效果。
2. 选择适合的平台
-
根据团队技术能力和用例选择框架。技术团队可选择LangGraph,业务团队可选择Dify等低代码平台。
3. 试点测试
-
从单一、明确的高价值用例开始,运行2-3个月的试点,评估效果并解决技术问题。
4. 构建系统而非单一工具
-
打造协作型Agent系统,分别负责数据收集、分析和行动,提升整体效率。
5. 遵循四步工作流
-
用户任务分配、规划与工作分配、迭代优化输出、执行行动,确保输出质量。
6. 避免常见误区
-
不要试图立即自动化所有流程,优先选择智能决策能带来高价值的场景。
7. 关注关键指标
-
跟踪问题解决率、用户满意度等指标,定期优化。
8. 从第一天规划扩展
-
考虑API成本、基础设施需求,并通过培训减少对外部供应商的依赖。
六、迎接AI Agents的智能未来
AI Agents正在从简单的聊天机器人进化成能够规划、行动和协作的智能系统。它们的多模态处理能力和深度集成正在重塑业务流程。然而,随着《欧盟AI法案》等法规的实施,企业在部署时需优先考虑透明性和合规性。
2025年的AI Agents市场提供了丰富的选择:开发团队可选择LangGraph、AutoGen等框架打造定制化解决方案;业务团队则可借助Dify、Agentforce等低代码平台快速上手。无论你是开发者、数据科学家还是企业领导者,选择合适的AI Agent工具,将为你打开智能化转型的大门。
七、AI大模型从0到精通全套学习大礼包
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
只要你是真心想学AI大模型,我这份资料就可以无偿共享给你学习。大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!
如果你也想通过学大模型技术去帮助就业和转行,可以点扫描下方链接👇👇
大模型重磅福利:入门进阶全套104G学习资源包免费分享!
01.从入门到精通的全套视频教程
包含提示词工程、RAG、Agent等技术点
02.AI大模型学习路线图(还有视频解说)
全过程AI大模型学习路线
03.学习电子书籍和技术文档
市面上的大模型书籍确实太多了,这些是我精选出来的
04.大模型面试题目详解
05.这些资料真的有用吗?
这份资料由我和鲁为民博士共同整理,鲁为民博士先后获得了北京清华大学学士和美国加州理工学院博士学位,在包括IEEE Transactions等学术期刊和诸多国际会议上发表了超过50篇学术论文、取得了多项美国和中国发明专利,同时还斩获了吴文俊人工智能科学技术奖。目前我正在和鲁博士共同进行人工智能的研究。
所有的视频由智泊AI老师录制,且资料与智泊AI共享,相互补充。这份学习大礼包应该算是现在最全面的大模型学习资料了。
资料内容涵盖了从入门到进阶的各类视频教程和实战项目,无论你是小白还是有些技术基础的,这份资料都绝对能帮助你提升薪资待遇,转行大模型岗位。
智泊AI始终秉持着“让每个人平等享受到优质教育资源”的育人理念,通过动态追踪大模型开发、数据标注伦理等前沿技术趋势,构建起"前沿课程+智能实训+精准就业"的高效培养体系。
课堂上不光教理论,还带着学员做了十多个真实项目。学员要亲自上手搞数据清洗、模型调优这些硬核操作,把课本知识变成真本事!
如果说你是以下人群中的其中一类,都可以来智泊AI学习人工智能,找到高薪工作,一次小小的“投资”换来的是终身受益!
应届毕业生:无工作经验但想要系统学习AI大模型技术,期待通过实战项目掌握核心技术。
零基础转型:非技术背景但关注AI应用场景,计划通过低代码工具实现“AI+行业”跨界。
业务赋能 突破瓶颈:传统开发者(Java/前端等)学习Transformer架构与LangChain框架,向AI全栈工程师转型。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓