自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(27)
  • 收藏
  • 关注

原创 打破常规!OpenAI无向量化RAG技术全解析

无向量化RAG技术解析:创新检索增强生成方法 摘要:OpenAI推出的无向量化RAG技术突破了传统检索增强生成的局限,采用分层导航策略替代向量数据库,实现更精准的信息溯源。该技术通过文档分块、块选择和块细化三个步骤,模仿人类阅读方式逐步筛选信息。"思考板"机制记录中间决策过程,增强模型可解释性;强制引用校验确保回答可溯源,提高输出可靠性。相比传统方法,无向量化RAG在医疗诊断、法律咨询等领域展现出更精准的检索能力、更强的可解释性和更低的计算成本,为专业领域提供了值得信赖的AI辅助工具。

2025-07-29 13:54:55 460

原创 从0到1:大模型进化全史,一文看懂!

【摘要】人工智能从早期规则系统发展到现代大模型经历了三个阶段。2006-2019年为技术奠基期,深度学习复兴,RNN、CNN等技术在特定领域取得突破,2017年Transformer架构的革命性创新为后续发展奠定了基础。2020-2023年迎来爆发增长,GPT-3展现惊人语言能力,ChatGPT让大模型走进大众视野,GPT-4开启多模态时代。2024年以来,大模型持续进化,在架构优化、训练算法等方面取得突破,同时呈现开源与闭源模式并存、垂直领域专业化发展的趋势。当前大模型正向更高效、更专业、更安全的方向发展

2025-07-29 13:47:34 515

原创 LangChain大模型大厂面试题及讲解答案

用。

2025-07-28 14:50:50 333

原创 解锁Coze开源新姿势:本地部署全攻略

当你成功在本地部署 Coze 后,打开浏览器访问对应的地址(如),就会进入 Coze Studio 的前端页面。这个页面就像是一个创意工厂,为你提供了各种构建 AI 智能体的工具和资源。页面顶部通常是导航栏,包含 “首页”“智能体管理”“知识库”“插件市场” 等主要功能入口。点击 “智能体管理”,你可以看到已创建的智能体列表,在这里可以对智能体进行创建、编辑、删除等操作。

2025-07-28 14:37:59 1119

原创 Agent大模型大厂面试题及讲解答案

这篇技术文章讨论了Agent大模型的核心概念、架构与未来发展。主要内容包括: Agent大模型与传统大模型的差异:具备自主决策、动态规划和闭环交互能力 典型架构五大模块:感知、记忆、规划、行动和反思模块 关键技术实现:工具调用安全性、三种记忆机制(上下文窗口/向量数据库/知识图谱) 性能评估指标:任务完成率、交互效率、鲁棒性等 落地挑战与应对:长任务规划、实时数据依赖、安全性风险等 未来趋势:多模态融合、群体协作、轻量化与个性化发展 文章以电商智能客服为例,展示了Agent大模型的实际工作流程。

2025-07-27 14:56:42 315

原创 大模型为啥能看懂文字?秘密藏在这堆数字里!

大模型理解文字的核心在于"词嵌入"技术。它把每个词转化为高维数字向量(如7168维),通过数学运算捕捉词语间的关系。例如"国王-男人+女人=女王"这样的向量运算。这些向量在训练过程中会不断调整位置,使语义相近的词靠得更近。同时,一词多义的问题也能解决——词向量会根据上下文动态调整,如"苹果"在"吃"的上下文中偏向水果义,在"发布"的上下文中偏向公司义。这种用高维数学空间表示词义的方法,让AI实现了对语言的理解能力。

2025-07-26 14:34:54 215

原创 为什么你的 RAG 总漏关键信息?知识图谱才是破局关键!

摘要: RAG(检索增强生成)虽然广泛应用,但常因关键词缺失导致漏检关键信息。知识图谱通过结构化关系网络可有效解决这一痛点:1)问题扩充,利用图谱关联实体精准检索;2)双路检索,结合向量库与图谱子图生成更完整上下文。落地时需应对三大挑战:图谱构建成本、信息去重及复杂关系推理。未来RAG的发展方向将是结构化与非结构化数据的融合,以提升大模型应用的准确性和实用性。

2025-07-26 14:30:13 258

原创 RAG 技术深度面试题:架构、优化与实践应用

本文探讨了RAG(检索增强生成)系统的设计与优化策略。在架构设计上,两阶段检索(召回+重排序)更适合企业知识库,能提升召回全面性和排序精度。检索优化方面,IVF索引适合高吞吐场景,HNSW索引则适合高精度需求。文档分块建议采用"语义优先+滑动窗口兜底"策略。多模态RAG系统需构建图文双索引并实现跨模态检索。评估指标应涵盖检索质量、生成质量和事实一致性。实时性优化可通过增量索引和分层缓存实现。

2025-07-25 14:23:07 602

原创 大模型进阶面试题

大模型进阶面试题:训练细节、应用挑战与安全实践。

2025-07-25 14:13:07 561

原创 大模型面试题讲解

本文系统讲解了大模型面试核心知识点,涵盖Transformer架构、Token生成机制、预训练与微调区别、参数规模影响、RAG检索增强、MoE专家模型、RLHF强化学习训练及模型部署方式等8大专题。重点解析了自注意力机制实现长距离依赖、子词Token作为计算单位、Scaling Law比例法则、检索增强解决幻觉问题等关键技术原理,并对比了企业级与PC端模型部署的差异。内容深入浅出,适合快速掌握大模型核心概念与技术要点。

2025-07-22 20:13:54 771

原创 新鲜出炉的大模型面试题

本文汇总了大模型核心技术面试题及解析,涵盖Transformer架构、训练策略、优化技术、推理系统等关键领域。主要内容包括:1)多头注意力机制通过并行子空间实现多模态特征提取;2)组合数据/张量/流水线并行策略训练万亿参数模型;3)LoRA与QLoRA参数高效微调方法对比;4)三级缓存体系解决分布式推理显存瓶颈;5)GQA注意力变体平衡性能与效率;6)构建包含基础能力、鲁棒性、效率及伦理的多维评估体系;7)KVCache技术降低推理复杂度;8)稀疏计算、多模态融合等前沿趋势分析。

2025-07-22 20:11:13 547

原创 RAG 技术落地:从文档处理到模型输出,细节决定大模型应用效果

本文深入剖析了RAG(检索增强生成)技术在实际应用中的关键环节与挑战。从文档处理的格式解析和语义分割,到向量转化的技术选型,再到问题优化的精准检索,每个步骤都直接影响最终效果。文章特别强调了排序优化从粗排到精排的过程,Prompt设计对大模型输出的引导作用,以及回复检查作为质量保障的必要性。作者指出,RAG应用落地需要根据具体场景(如知识密集度、并发需求、专业领域)针对性优化各环节,只有精细化处理文档处理、检索排序、模型调用等细节,才能实现精准可靠的智能服务。

2025-07-21 21:54:09 1098

原创 10分钟速通AI黑话

本文系统介绍了大语言模型(LLM)的核心技术框架和工作原理。首先解释了大模型基于Transformer架构的token续写机制,以及RAG、MOE等增强技术。接着详细阐述了大模型训练的三大阶段:预训练通过自监督学习构建知识基座,后训练利用监督微调塑造专业能力,强化学习(包括RLHF)则优化人类偏好表现。文章还介绍了参数规模与性能的关系、稀疏模型优化以及蒸馏量化等轻量化技术。通过这一知识框架,读者可以理解大模型从基本原理到完整训练流程的关键技术,为深入认知AI发展奠定基础。

2025-07-21 16:58:20 898

原创 搞懂 RAG 里的“分块”:21种策略

本文介绍了检索增强生成(RAG)技术中的关键环节——分块(Chunking),并详细列举了21种分块策略。每种策略针对不同数据类型和用途,如朴素分块、固定窗口分块、滑动窗口分块、基于句子/段落/页面的分块、结构化分块、基于文档结构的分块等。文章强调分块方法的选择直接影响RAG系统的检索效果,需要根据数据格式、结构和用途"量体裁衣"。合理分块能让大模型更精准理解数据,避免无效回答或幻觉内容,是RAG技术从理论到实践的关键步骤。

2025-07-20 20:51:02 477

原创 大模型 “瘦身术”:量化与蒸馏背后的秘密

大模型"瘦身"的两大核心技术:量化通过降低参数精度(如float32转int8)缩小模型体积,蒸馏则让小模型模仿大模型输出行为。量化能减少存储空间和加速推理,蒸馏可在保持性能的同时大幅压缩模型规模。这两种方法都能有效降低部署成本,使大模型更易应用于实际场景。

2025-07-20 15:19:30 245

原创 大模型为何能应对未知问题?揭秘核心的 “泛化能力”

大模型之所以能回答未学过的问题,关键在于"泛化能力"——类似人类的"举一反三"能力。文章通过生活案例解释:李阿姨掌握砍价规律能在新市场发挥,而王阿姨死记价格换了市场就不灵;学英语时掌握语法规律比死记硬背更实用。同样,大模型通过海量数据训练,不是简单记忆,而是提炼通用规律(如解决问题的基本思路),从而应对新问题。提升泛化能力,让AI像人类一样触类旁通,是人工智能发展的重要方向。

2025-07-20 02:07:02 222

原创 大模型中的“超级专家会诊”:深入解读MoE架构

MoE架构:大模型的“智能分诊”技术MoE(混合专家)架构通过“专业分工+稀疏激活”让AI模型高效处理海量数据。其核心是:动态路由:每个输入仅激活少数相关专家(如2-4个),其余保持休眠,大幅节省算力。专家多样性:不同专家专攻特定领域(如数字、情感、实体识别),形成互补能力。负载均衡:智能分配任务,避免专家过载或闲置,提升整体效率。优势:万亿参数:模型规模突破传统限制(如GPT-4可能采用MoE)。高效推理:计算量仅为稠密模型的1/3,响应速度更快。成本优化:降低训练和部署资源消耗。

2025-07-20 01:38:33 663

原创 MaxKB本地部署

MaxKB = Max Knowledge Base,是一款基于大语言模型和 RAG 的开源知识库问答系统,广泛应用于智能客服、企业内部知识库、学术研究与教育等场景。开箱即用:支持直接上传文档 / 自动爬取在线文档,支持文本自动拆分、向量化和 RAG(检索增强生成),有效减少大模型幻觉,智能问答交互体验好;模型中立。

2024-12-11 15:24:28 1179

原创 《RAGFlow》本地部署-创建知识库

RAGFlow 可以为各种规模的企业及个人提供一套精简的 RAG 工作流程,结合大语言模型(LLM)针对用户各类不同的复杂格式数据提供可靠的问答以及有理有据的引用。先来到个人中心,设置一下模型,我这里用的是OpenAI,将key填进去就可以了,当然也支持其他的模型,大家去申请相应的key就可以了。我这个是创建了一个知识库的样子,大家如果第一次试用,是没有这个知识库的。在你的浏览器中输入你的服务器对应的 IP 地址并登录 RAGFlow。接下来就可以进行测试了,我进行了测试,感觉效果还可以。

2024-12-11 14:15:33 3147

原创 RAG快速落地-阿里云百炼

大模型在最近两年特别火,相信大家或多或少都听说过,那么大模型落地的应用场景,个人觉得RAG是现在能落地的应用场景之一。

2024-12-10 22:23:51 749

原创 Ollama部署大模型,本地调用

Ollama是一个强大的大型语言模型平台,它允许用户轻松地下载、安装和运行各种大型语言模型。在本文中,我将指导你如何在你的本地机器上部署Ollama,并展示如何使用Python进行简单的API调用以访问这些模型最近很多人在学习大模型的时候,也遇到这个问题了,Ollama下载的模型,如果不想在命令行里面直接使用,而是想用Python去调用大模型该如何去使用?下载完成之后,可以在命令行中敲ollama,如果能看到下面的界面说明安装成功了可以拉一个大模型下来,我以llama3为例,

2024-12-10 22:20:25 1422

原创 《大模型+爬虫》落地实战之12306查票

大语言模型,例如 GPT-4,拥有强大的知识储备和语言理解能力,能够进行流畅的对话、创作精彩的故事,甚至编写代码。然而,它们也面临着一些难以克服的困境,就像一个空有知识却无法行动的巨人。

2024-12-09 14:28:23 1391

原创 震惊!!大模型玩转JS逆向

虽然这个案例还不能说明什么,但是大模型在面对JS逆向的代码混淆,可以给大家一个思路,可以根据这个思路来进行还原。强烈建议爬虫工程师学习一下大模型!不知道大家有没有被JS代码混淆折磨过,我之前搞爬虫的时候,也经常被OB代码混淆搞到心态崩溃,但是自从接触了大模型,腰不疼了,腿不酸了,OB代码直接交给大模型,简直不要太爽。大家也可以自行解一下,看看和大模型最终解出来的结果进行对比。我放一个ChatGPT3.5的截图。这是一段经过OB混淆之后的代码。

2024-12-09 14:26:13 976

原创 《爬虫+大模型》到底有没有搞头?

这个框架,发送请求、数据提取,全都交给了大模型去处理,整体代码非常的简洁,只需要url地址和提示词(prompt)就可以了,非常的nice啊,目前还没有测试有反爬虫的网站,大家可以测试一下。这段代码就是去获取页面HTML,然后交给大模型去提取数据,大家自己做测试的时候,可以把HTML的范围缩小一点,不然token可能会超。最近在学习大模型,之前我是干过一段时间爬虫,在学习大模型的过程中,突发奇想能不能把大模型的能力结合爬虫,搞个AI爬虫玩一玩。说干就干,先测试一下大模型的数据提取能力。

2024-12-06 20:25:47 311

原创 AI时代,大模型可能会干掉爬虫工程师

说实话,测试完之后我是相当的震惊,这意味着爬虫工程师可能真的不需要学习太多的知识了,当然这只是我的片面的认知,爬虫工程师之前要学习JS逆向,等一大堆的技术,有了大模型的能力,爬虫工程师可能只要考虑如何获取到HTML,如何写prompt提示词就可以了,这大大降低了爬虫的难度。最近在学习大模型的知识,当我学到了prompt,发现这个东西可以做很多事情,偶然间想到了爬虫,如果让大模型去搞数据提取工作,我只给大模型HTML代码,写好prompt,岂不是美滋滋。说干就干,拿到豆瓣的电影列表HTML代码。

2024-12-06 17:01:17 163

原创 《大模型(LLM)基础篇》(一):大模型介绍

我接下来会给大家介绍一下大模型中的一些基础概念以及会解释一下大模型中的名词。

2024-09-04 14:36:04 527

原创 我的职业生涯转型:金融到Python的跨越

通过自学Python,我不仅提升了个人技能,也拓宽了职业视野。我相信,只要我们有目标、有计划,并且坚持不懈,每个人都能在自己选择的道路上取得成功。

2024-06-08 16:19:07 538 2

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除