- 博客(19)
- 收藏
- 关注
原创 【YOLOv11改进 - 注意力机制】 MHSA:多头自注意力(Multi-Head Self-Attention)
【YOLOv11改进 - 注意力机制】 MHSA:多头自注意力(Multi-Head Self-Attention)
2024-11-07 21:58:27
1039
原创 【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力
2024-11-07 21:57:51
923
原创 【YOLOv11改进 - 注意力机制】MLCA(Mixed local channel attention)混合局部通道注意力
【YOLOv11改进 - 注意力机制】MLCA(Mixed local channel attention)混合局部通道注意力
2024-11-07 21:57:13
878
原创 【YOLOv11改进 - 注意力机制】GAM(Global Attention Mechanism):全局注意力机制,减少信息损失并放大全局维度交互特征
【YOLOv11改进 - 注意力机制】GAM(Global Attention Mechanism):全局注意力机制,减少信息损失并放大全局维度交互特征
2024-11-07 21:56:37
776
原创 【YOLOv11改进 - 注意力机制】CoTAttention上下文转换器注意力
Transformer自注意力机制已经引领了自然语言处理领域的革命,并且最近激发了Transformer风格架构设计在众多计算机视觉任务中取得竞争性结果。然而,大多数现有设计直接在二维特征图上使用自注意力机制,以基于每个空间位置的孤立查询和键对来获取注意力矩阵,但没有充分利用邻近键之间的丰富上下文信息。在这项工作中,我们设计了一种新颖的Transformer风格模块,即Contextual Transformer(CoT)块,用于视觉识别。
2024-11-07 21:56:01
1025
原创 【YOLOv11改进 - 注意力机制】iRMB: 倒置残差移动块,即插即用的轻量注意力
本论文旨在开发现代、高效、轻量的密集预测模型,并在参数、浮点运算次数与性能之间寻求平衡。虽然倒置残差块(IRB)是轻量级卷积神经网络(CNN)的重要基础,但在基于注意力的研究中尚缺类似的构件。本研究从统一视角出发,结合高效IRB和有效的Transformer组件,重新考虑轻量级基础架构。我们将基于CNN的IRB扩展到基于注意力的模型,并提出了一种单残差元移动块(MMB)用于轻量级模型设计。
2024-11-07 21:55:26
1105
原创 【YOLOv11改进 - 注意力机制】 MSDA(Multi-Scale Dilated Attention):多尺度空洞注意力
作为事实上的解决方案,标准的视觉变换器(ViTs)被鼓励模拟任意图像块之间的长距离依赖性,而全局关注的接受域导致了二次计算成本。视觉变换器的另一个分支受到CNNs启发,利用局部注意力,只模拟小邻域内块之间的交互。尽管这样的解决方案降低了计算成本,但它自然会受到小的关注接受域的限制,这可能会限制性能。在这项工作中,我们探索有效的视觉变换器,以追求计算复杂性和关注接受域大小之间的理想折衷。
2024-11-07 21:54:51
1337
原创 【YOLOv11改进 - 注意力机制】EMA(Efficient Multi-Scale Attention):基于跨空间学习的高效多尺度注意力
通道或空间注意力机制在许多计算机视觉任务中表现出显著的效果,可以生成更清晰的特征表示。然而,通过通道维度缩减来建模跨通道关系可能会对提取深度视觉表示带来副作用。本文提出了一种新颖高效的多尺度注意力(EMA)模块。该模块着重于保留每个通道的信息并减少计算开销,我们将部分通道重新调整为批次维度,并将通道维度分组为多个子特征,使空间语义特征在每个特征组内分布均匀。具体来说,除了在每个并行分支中对全局信息进行编码以重新校准通道权重外,这两个并行分支的输出特征还通过跨维度交互进一步聚合,以捕捉像素级的成对关系。
2024-11-07 21:53:33
1514
原创 YOLOv11 正式发布!你需要知道什么_ 另附:YOLOv8 与YOLOv11 各模型性能比较
2024年9月30日,Ultralytics在他们的YOLOVision活动上正式发布了YOLOv11。YOLOv11是由位于美国和西班牙的Ultralytics团队开发的YOLO模型的最新迭代版本。
2024-11-07 21:52:15
3776
原创 【YOLO11改进 - C3k2融合】C3k2融合YOLO-MS的MSBlock 分层特征融合策略,轻量化网络结构
我们旨在为目标检测领域提供一种高效且性能卓越的目标检测器,称为YOLO-MS。其核心设计基于一系列调查研究,关于不同核心大小的卷积如何影响不同尺度物体的检测性能。研究结果是一种新策略,能够显著增强实时目标检测器的多尺度特征表示能力。为验证我们策略的有效性,我们构建了一个网络架构,命名为YOLO-MS。我们从零开始在MS COCO数据集上训练我们的YOLO-MS,不依赖于任何其他大规模数据集,如ImageNet,或预训练权重。
2024-11-07 21:51:28
698
原创 【YOLOv11改进 - 注意力机制】LSKA(Large Separable Kernel Attention):大核分离卷积注意力模块
基本设计LSKA将2D深度卷积层的卷积核分解为级联的水平和垂直1-D卷积核。这种分解设计使得LSKA可以直接使用深度卷积层的大内核,无需额外的模块或计算。计算效率LSKA的设计降低了参数数量的增长,从而降低了计算复杂度和内存占用。通过级联1-D卷积核的方式,LSKA在处理大内核时能够保持高效性能。形状和纹理偏好LSKA设计使得模块更加偏向于对象的形状而非纹理。这种偏好有助于提高模型对对象形状的学习能力,从而提高模型的鲁棒性和泛化能力。
2024-11-07 21:49:34
1487
原创 【YOLO11改进 - C3k2融合】C3k2融合DWRSeg二次创新C3k2_DWRSeg:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测
许多当前的研究直接采用多速率深度扩张卷积,以同时从一个输入特征图中捕获多尺度上下文信息,从而提高实时语义分割的特征提取效率。然而,由于不合理的结构和超参数,这种设计可能导致难以获取多尺度上下文信息。为了降低获取多尺度上下文信息的难度,我们提出了一种高效的多尺度特征提取方法,将原来的单步方法分解为两个步骤:区域残差化-语义残差化。在这种方法中,多速率深度扩张卷积在特征提取中扮演了一个简单的角色:在第二步中基于第一步提供的每个简明区域形式的特征图,执行具有一个期望感受野的简单基于语义的形态滤波,以提高其效率。
2024-11-07 21:48:34
1623
原创 YOLO11创新改进系列:卷积,主干 注意力,C3k2融合,检测头等创新机制(已更新100+)
💖💖💖目前已有100+ 篇,至少更新150+其中包括注意力机制替换、卷积优化、检测头创新、损失与IOU优化、block优化与多层特征融合、轻量级网络设计、多创新点融合创新。:我们不仅关注最新的研究成果,还会持续更新和回顾那些经过实践验证的改进机制。【注意力机制替换】【卷积优化】【检测头创新】【损失与IOU优化】【轻量级网络设计】【多创新点融合】【C3k2融合创新】:每篇文章都附带详细的步骤和源码,便于您的论文写作和项目实现。:每周发布3-10篇最新创新机制文章,确保时刻掌握前沿内容。
2024-11-07 10:15:57
746
原创 【YOLOv8改进 - 注意力机制】Focused Linear Attention :全新的聚焦线性注意力模块
【YOLOv8改进 - 注意力机制】Focused Linear Attention :全新的聚焦线性注意力模块
2024-07-24 17:16:48
909
原创 【YOLOv8改进- Backbone主干】YOLOv8更换主干网络之ConvNexts,纯卷积神经网络,更快更准,,降低参数量!
【YOLOv8改进- Backbone主干】YOLOv8更换主干网络之ConvNexts,纯卷积神经网络,更快更准,,降低参数量!
2024-07-24 17:15:21
1197
原创 【YOLOv8改进- Backbone主干】YOLOv8 更换主干网络之 PP-LCNet,轻量级CPU卷积神经网络,降低参数量
【YOLOv8改进- Backbone主干】YOLOv8 更换主干网络之 PP-LCNet,轻量级CPU卷积神经网络,降低参数量
2024-07-24 17:14:39
2006
原创 【YOLOv8改进 - 卷积Conv】DWRSeg:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测
【YOLOv8改进 - 卷积Conv】DWRSeg:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测
2024-07-24 17:14:02
1601
原创 YOLOv8有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例
💖💖💖目前已有 100+ 篇,至少更新150+,其中包括注意力机制替换、卷积优化、检测头创新、损失与IOU优化、block优化与多层特征融合、轻量级网络设计。重要🔥🔥🔥:订阅专栏的的小伙伴,可以私信博主,加入YOLOv8改进交流群,获取完整的可运行代码:QQ:3880513775。
2024-07-24 17:12:39
655
原创 【YOLOv10改进 -注意力机制】Mamba之MLLAttention :基于Mamba和线性注意力Transformer的模型
Mamba是一种具有线性计算复杂度的有效状态空间模型。它最近在处理各种视觉任务的高分辨率输入方面表现出了令人印象深刻的效率。在本文中,我们揭示了强大的Mamba模型与线性注意力Transformer共享令人惊讶的相似性,而线性注意力Transformer在实践中通常不如传统Transformer。通过探索高效的Mamba和表现欠佳的线性注意力Transformer之间的相似性和差异,我们提供了全面的分析,揭示了Mamba成功背后的关键因素。具体来说,我们在统一的公式下重新定义了选择性状态空间模型和线性注意力
2024-07-08 15:57:19
2324
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人