YOLOv11目标检测创新改进与实战案例专栏
点击查看文章目录: YOLOv11创新改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例
点击查看专栏链接: YOLOv11目标检测创新改进与实战案例
2024年9月30日,Ultralytics在他们的YOLOVision活动上正式发布了YOLOv11。YOLOv11是由位于美国和西班牙的Ultralytics团队开发的YOLO模型的最新迭代版本。
YOLOv11 有哪些新特性?
与YOLOv10相比,YOLOv11带来了大量改进,包括但不限于以下几点:
-
模型架构的增强:模型的架构经过优化,更好地处理输入图像并进行预测。通过改进的架构,模型在图像处理和推理阶段表现更加高效。
-
GPU优化:符合现代机器学习模型的趋势,YOLOv11在GPU上进行了优化训练。与之前版本相比,GPU训练不仅提高了模型的训练速度,还显著提升了模型的精度。
-
速度提升:没错,速度是YOLOv11的一大亮点。通过GPU优化和架构改进,YOLOv11的训练和推理速度比以往版本快得多,延迟减少高达25%。
-
参数减少:模型参数的减少使得YOLOv11运行更加高效,速度更快,同时保持高精度,几乎不影响准确性。
-
更强的适应性和更多支持任务:YOLOv11支持更多类型的任务、更多种类的目标检测和处理更多不同类型的图像。这使得YOLOv11的应用场景更加广泛,几乎可以胜任任何图像识别任务。
YOLOv11 带来了什么?
YOLOv11 提供了多个模型,涵盖了以下功能:
- 目标检测:经过训练后,能够检测图像中的目标物体。
- 图像分割:不仅能够进行目标检测,还能将图像中的物体进行精确分割。
- 姿态估计:通过训练后可以绘制人体姿态,使用点和线来标识关节和肢体。
- 旋转边界框(OBB):与目标检测类似,但边界框可以进行旋转,适用于具有方向性的物体检测。
- 图像分类:经过训练后能够对图像进行类别分类。 </