- 博客(6)
- 收藏
- 关注
原创 转置卷积操作输出特征图大小计算
最后经过步骤(4): 将步骤(2)中得到的输出图大小进行卷积操作,这里的。经过步骤(1) :原本的输入特征图除了最后列,每一列的下面都填充了有。经过步骤(3): 经过步骤(3)将卷积核进行上下、左右进行翻转。(2) 在输入特征图四周填充k-p-1 行 k-p- 列 0。再经过步骤(2):经过步骤(2)的填充操作,(1) 在输入特征图元素间填充s-1 行 s-1列 0。(3) 将卷积核参数上下、左右进行翻转。,得到的步骤(1)填充后的。
2024-10-27 13:23:57
716
1
原创 (霹雳吧啦Wz)Swin Transformer代码中蒙版和W-MSA、SW-MSA实现解析
取其中的一个[1,1,9]举例首先最后一行向量为[[[4,4,5,4,4,5,7,7,8]]],第一个通过广播之后就是[[[4,4,5,4,4,5,7,7,8]],[],[],[],[]···]
2024-10-25 14:04:51
2016
原创 (霹雳吧啦Wz)Swin Transformer详细学习笔记
Patch Merging:在Stage2 - Stage4中经过Patch Merging层之后H和W减少到原来的1/2,channel数翻倍,首先使用2×2大小的窗口进行匹配,相同位置上的像素取出拼接,得到上面例子中的4个特征图,按channel方向进行拼接,然后通过一个LayerNorm,进行channel方向上的一个归一化,再通过全连接层,在深度方向进行一个线性映射,得到Patch Merging的一个输出。计算量上W-MSA的计算量更少,如图6所示,对于MSA模块,有生成q的计算量为。
2024-10-23 10:05:34
1899
1
原创 Transformer 学习笔记
针对NLP(自然语言处理),seq to seq(序列到序列)提出来的,transform引入自注意力机制(self Attention)和多头注意力机制(Multi head Attention)input Embedding 代表是词嵌入向量,将词嵌入向量。
2024-10-17 10:34:07
2174
1
原创 混淆矩阵指标的创建学习笔记
代码中首先生成一个num_classes ×num_classes的矩阵,经过inds核心步骤创建混淆矩阵,对于第一个像素标签,真是标签0,预测标签为1,最后一个像素的真实像素标签为3,预测为3,inds记录的是每个标签在混淆矩阵的位置,如下图第二个表格所示,再根据统计直方图的方法,minlength=n的平方,即混淆矩阵的大小,,然后将对应的索引inds中的显示的位置进行数值上加一,后面重塑成n×n的形状,即可得到混淆矩阵。,精确率衡量的是预测为正例中实际为正例的比例。
2024-10-16 16:41:15
414
原创 (语义分割)U2Net网络笔记
再下采样就会丢失上下文信息,采用膨胀卷积,膨胀卷积的作用是将扩大感受野,在不增加计算量和参数信息的情况下提取更多的上下文信息,减少特征的丢失,避免传统卷积操作中的下采样使特征减少,具体在U2Net网络中为。前部分代表sup1-sup6通过sigmoid函数输出的预测概率图和手工标注的GT来计算其损失l,M=6,w = 每个损失的权重,后部分代表是最终的预测概论图与GT之间的损失,每一层分别对应从上到下分别为 RSU-7、RSU-6、RSU-5、RSU-4以及RSU-4F模块。
2024-10-16 11:01:38
531
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人