回归预测合集|基于灰狼优化21个机器学习和深度学习的数据回归预测Matlab程序 多特征输入单输出
一、清单
基于灰狼优化BP神经网络的数据预测Matlab程序GWO–BP
基于灰狼优化卷积神经网络的数据预测Matlab程序GWO–CNN
基于灰狼优化长短期记忆神经网络的数据预测Matlab程序GWO–LSTM/BiLSTM/GRU
基于灰狼优化深度神经网络的数据预测Matlab程序GWO–DNN
基于灰狼优化极限学习机的数据预测Matlab程序GWO–ELM
基于灰狼优化随机森林的数据预测Matlab程序GWO–RF
基于灰狼优化核极限学习机的数据预测Matlab程序GWO–KELM
基于灰狼优化深度极限学习机的数据预测Matlab程序GWO–DELM
基于灰狼优化正则化极限学习机的数据预测Matlab程序GWO–RELM
基于灰狼优化径向基神经网络的数据预测Matlab程序GWO–RBF
基于灰狼优化支持向量机的数据预测Matlab程序GWO–SVM
基于灰狼优化相关向量机的数据预测Matlab程序GWO–RVM
基于灰狼优化最小二乘支持向量机的数据预测Matlab程序GWO–LSSVM
基于灰狼优化极端梯度提升树的数据预测Matlab程序GWO–Xgboost
基于灰狼优化LightGBM的数据预测Matlab程序GWO–LightGBM
基于灰狼优化混合核极限学习机的数据预测Matlab程序GWO–HKELM
基于灰狼优化高斯过程时间序列的数据预测Matlab程序GWO–GPR
基于灰狼优化卷积–长短期记忆网络-自注意力机制的数据预测Matlab程序GWO–CNN-LSTM-Attention
基于灰狼优化卷积–门控循环单元-自注意力机制的数据预测Matlab程序GWO–CNN-BiGRU-Attention
二、实验结果
1.输入多个特征,输出单个变量,多变量回归预测;
2.excel数据,前6列输入,最后1列输出,运行主程序即可,所有文件放在一个文件夹;
3.命令窗口输出R2、MSE、MAE;
4.可视化:代码提供了可视化工具,用于评估模型性能,包括真实值与预测值的收敛图、对比图、拟合图、残差图。
三、核心代码
%% 导入数据
res = xlsread('数据集.xlsx');
%% 数据分析
num_size = 0.8; % 训练集占数据集比例
outdim = 1