分类预测|基于鹦鹉优化宽度神经网络的数据分类预测Matlab程序 PO-BLS多特征输入多类别输出

分类预测|基于鹦鹉优化宽度神经网络的数据分类预测Matlab程序 PO-BLS多特征输入多类别输出


前言

分类预测|基于鹦鹉优化宽度神经网络的数据分类预测Matlab程序 PO-BLS多特征输入多类别输出

一、PO-BLS模型

PO-BLS:鹦鹉优化宽度神经网络分类预测

PO-BLS(Parrot Optimization-Based Broad Learning System)结合了鹦鹉优化算法和宽度神经网络(BLS, Broad Learning System)的特点,旨在提高分类任务的性能。下面将详细介绍其原理和流程。

原理

1. 宽度神经网络(BLS)

BLS是一种新兴的神经网络结构,其特点是在同一层中增加大量节点(宽度),而不是单纯增加层数(深度)。这种结构能够更好地处理特征学习和模式识别。主要组成部分包括:

  • 输入层:直接接收输入数据。
  • 特征映射:通过随机投影或特征变换生成新特征。
  • 输出层:经过权重调整后输出最终预测结果。
BLS 的基本步骤:
  1. 输入数据:将输入数据传递给网络。
  2. 特征映射:通过随机生成的投影矩阵将输入数据映射到高维特征空间。
  3. 训练:使用线性回归等方法训练网络。
  4. 输出预测:对新样本进行分类或回归预测。
2. 鹦鹉优化算法(PO)

鹦鹉优化算法模仿了鹦鹉的行为,通过群体智能来搜索最优解。其主要步骤包括:

  • 初始化:随机生成一组“鹦鹉”作为候选解。
  • 适应度评估:根据目标函数评估每个鹦鹉的适应度。
  • 更新位置:根据适应度及其他鹦鹉的位置更新当前鹦鹉的位置。
  • 迭代优化:重复适应度评估和位置更新,直到满足终止条件。

流程

以下是基于PO-BLS的分类预测的详细流程:

1. 数据准备
  • 数据集选择:选择适合的分类数据集。
  • 数据预处理:包括去除缺失值、标准化、特征选择等。
2. 构建宽度神经网络(BLS)
  • 特征映射:生成随机投影矩阵,将输入特征映射到高维特征空间。
  • 构建模型
3. 鹦鹉优化算法(PO)
  • 初始化:生成初始“鹦鹉”群体,随机选择多个参数组合(如节点数、学习率等)。
  • 适应度计算:评估每个鹦鹉对应的BLS模型性能,使用交叉验证等方法评估准确率。
  • 位置更新:根据适应度更新鹦鹉的位置,保持多样性以探索全局最优解。
4. 模型训练与优化
  • 选择最佳参数:根据适应度选择表现最好的鹦鹉,同时保留多样性。
  • 迭代过程:重复适应度评估和位置更新,直到达到预设的最大迭代次数或适应度不再改善。
5. 预测与评估
  • 训练最终模型:使用找到的最优参数构建BLS模型。
  • 进行预测:对测试数据进行分类预测。
  • 评估性能:使用混淆矩阵、准确率、F1-score等指标来评估模型效果。

总结

PO-BLS结合了宽度神经网络的特性和鹦鹉优化算法的搜索能力,通过优化网络结构和参数配置,从而提高分类任务的性能。该方法在处理大规模数据时具有良好的适应性和高效性,是一种值得探索的机器学习技术。

二、实验结果

在这里插入图片描述

三、核心代码


%%  导入数据
res = xlsread('数据集.xlsx');

%%  数据分析
num_size = 0.7;                              % 训练集占数据集比例
outdim = 1;                                  % 最后一列为输出
num_samples = size(res, 1);                  % 样本个数
num_class 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值