LeetCode-1.两数之和 C++实现

一.问题描述

你可以假设每种输入只会对应一个答案,并且你不能使用两次相同的元素。

你可以按任意顺序返回答案

示例 1:

输入:nums = [2,7,11,15], target = 9
输出:[0,1]
解释:因为 nums[0] + nums[1] == 9 ,返回 [0, 1] 。

示例 2:

输入:nums = [3,2,4], target = 6
输出:[1,2]

示例 3:

输入:nums = [3,3], target = 6
输出:[0,1]


二.问题思路

  

 2.1类似暴力解法

 
这个代码的思路应该是在遍历每个元素时,对于当前元素nums[i],寻找在它之后是否存在另一个元素等于target - nums[i]。如果存在,就返回它们的下标.这个方法的优点是相比双重循环的暴力法,每次只搜索后面的元素,减少了检查的次数。例如,对于i=0,检查后面的n-1个元素;i=1,检查n-2个,总的比较次数是(n-1)+(n-2)+...+1 = n(n-1)/2,时间复杂度还是O(n²)。所以这其实还是暴力法的优化版本,但时间复杂度并没有降低到O(n)。
代码实现
 

#include <iostream>
using namespace std;
#include <vector>
#include <algorithm>

class Solution {
public:
    vector<int> twoSum(vector<int>& nums, int target) {
        for (int i = 0;i < nums.size();i++)
        {
            int findx = target - nums[i];
            vector<int>::iterator it = find(nums.begin()+i+1, nums.end(), findx);
            if (it != nums.end())
            {
                int index = distance(nums.begin(), it);
                return{ i,index };
            }
        }
        return{};
    }
};

int main()
{
    Solution solution;
    vector<int> v = { 2, 7, 11, 15 };
    vector<int> result = solution.twoSum(v, 17);
    cout << result[0] << ", " << result[1] << endl; // 输出: 0, 1
    return 0;
}
时间复杂度
  • 平均情况:O(n²),每次遍历需调用 std::find(时间复杂度 O(n)),总时间为 O(n²)。

  • 优点:实现简单,适用于小规模数据。

  • 缺点:大规模数据效率低,明显劣于哈希表法的 O(n)。


2.2 哈希表优化解 

 C++中的哈希表可以用`std::unordered_map`来实现。这个容器提供了快速的查找和插入操作,平均时间复杂度是O(1)。所以基本思路应该是类似的:遍历数组,对于每个元素,计算其补数(即`target - 当前元素`),然后检查这个补数是否已经在哈希表中存在。如果存在,就返回对应的下标;如果不存在,就将当前元素及其下标存入哈希表
代码实现

#include <vector>
#include <unordered_map>

using namespace std;

class Solution {
public:
    vector<int> twoSum(vector<int>& nums, int target) {
        unordered_map<int, int> hash; // 哈希表:值 -> 下标
        for (int i = 0; i < nums.size(); ++i) {
            int complement = target - nums[i];
            if (hash.find(complement) != hash.end()) {
                return {hash[complement], i}; // 找到补数,返回下标
            }
            hash[nums[i]] = i; // 将当前元素存入哈希表
        }
        return {}; // 题目保证有解,此行不会执行
    }
};
  • 时间复杂度:O(n),只需一次遍历数组。

  • 空间复杂度:O(n),哈希表最多存储 n 个元素。

  • 避免重复使用元素:哈希表在插入当前元素前先检查补数,确保不会使用同一个元素两次。

  • 处理重复元素:哈希表保存的是元素第一次出现的下标,后续重复元素会正确匹配补数。

 三.方法比较
 

方法时间复杂度空间复杂度适用场景
暴力搜索O(n²)O(1)小规模数据,实现简单
哈希表优化解法O(n)O(n)大规模数据,实现高效

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值