一.问题描述
罗马数字包含以下七种字符: I
, V
, X
, L
,C
,D
和 M
。
字符 数值
I 1
V 5
X 10
L 50
C 100
D 500
M 1000
例如, 罗马数字 2
写做 II
,即为两个并列的 1 。12
写做 XII
,即为 X
+ II
。 27
写做 XXVII
, 即为 XX
+ V
+ II
。
通常情况下,罗马数字中小的数字在大的数字的右边。但也存在特例,例如 4 不写做 IIII
,而是 IV
。数字 1 在数字 5 的左边,所表示的数等于大数 5 减小数 1 得到的数值 4 。同样地,数字 9 表示为 IX
。这个特殊的规则只适用于以下六种情况:
-
I
可以放在V
(5) 和X
(10) 的左边,来表示 4 和 9。 -
X
可以放在L
(50) 和C
(100) 的左边,来表示 40 和 90。 -
C
可以放在D
(500) 和M
(1000) 的左边,来表示 400 和 900。
给定一个罗马数字,将其转换成整数
二.问题思路
2.1 暴力求解
逐个检查每个字符,并处理特殊情况(如IV、IX等),直接累加对应的数值。
class Solution {
public:
int romanToInt(string s) {
int count = 0;
for(int i=0;i<s.size();i++)
{
if(s[i]=='I')
{
if(i+1 < s.size() && s[i+1]=='V')
{
count+=4;
i++;
continue;
}
else if(i+1 < s.size() && s[i+1]=='X')
{
count+=9;
i++;
continue;
}
else count+=1;
continue;
}
if(s[i]=='V')
{
count+=5;
continue;
}
if(s[i]=='X')
{
if(i+1 < s.size() && s[i+1]=='L')
{
count+=40;
i++;
continue;
}
else if(i+1 < s.size() && s[i+1]=='C')
{
count+=90;
i++;
continue;
}
else count+=10;
continue;
}
if(s[i]=='L')
{
count+=50;
continue;
}
if(s[i]=='C')
{
if(i+1 < s.size() && s[i+1]=='D')
{
count+=400;
i++;
continue;
}
else if(i+1 < s.size() && s[i+1]=='M')
{
count+=900;
i++;
continue;
}
else count+=100;
continue;
}
if(s[i]=='D')
{
count+=500;
continue;
}
if(s[i]=='M')
{
count+=1000;
continue;
}
}
return count;
}
};
缺点:
-
冗余代码:大量重复条件判断,维护困难。
-
扩展性差:新增规则需修改多处条件
2.2 优化算法
映射数组+双指针比较
-
思路:
1使用数组建立罗马字符到数值的映射。
2.遍历字符串,比较当前字符与下一字符的值:
若当前值 < 下一值,说明是特殊组合(如 IV=4),则减去当前值。
否则,加上当前值。
3.最后单独处理最后一个字符。#include <string> using namespace std; class Solution { public: int romanToInt(string s) { int map[256] = {0}; map['I'] = 1; map['V'] = 5; map['X'] = 10; map['L'] = 50; map['C'] = 100; map['D'] = 500; map['M'] = 1000; int sum = 0; for (int i = 0; i < s.size() - 1; ++i) { if (map[s[i]] < map[s[i+1]]) { sum -= map[s[i]]; } else { sum += map[s[i]]; } } sum += map[s.back()]; return sum; } };
优点:
-
简洁高效:避免冗余条件判断,逻辑统一。
-
扩展性:新增字符只需修改映射数组。