一.问题描述
给你一个整数数组 nums
,判断是否存在三元组 [nums[i], nums[j], nums[k]]
满足 i != j
、i != k
且 j != k
,同时还满足 nums[i] + nums[j] + nums[k] == 0
。请你返回所有和为 0
且不重复的三元组。
注意:答案中不可以包含重复的三元组。
示例 1:
输入:nums = [-1,0,1,2,-1,-4]
输出:[[-1,-1,2],[-1,0,1]]
解释: nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0 。 nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0 。 nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0 。 不同的三元组是 [-1,0,1] 和 [-1,-1,2] 。 注意,输出的顺序和三元组的顺序并不重要。
示例 2:
输入:nums = [0,1,1]
输出:[]
解释:唯一可能的三元组和不为 0 。
示例 3:
输入:nums = [0,0,0]
输出:[[0,0,0]]
解释:唯一可能的三元组和为 0
二.问题思路
-
排序数组:首先对数组进行排序,使得相同的元素相邻,方便后续去重。
-
遍历数组:使用一个外层循环固定第一个元素
nums[i]
,并在每次循环开始时跳过重复的起始元素。 -
双指针查找:使用双指针
left
和right
分别指向当前起始元素后的首尾两端,计算三数之和:-
若和为0,记录该三元组,并跳过重复的
left
和right
。 -
若和小于0,左指针右移以增大和。
-
若和大于0,右指针左移以减小和。
-
-
去重处理:在每一步中,通过跳过重复元素来避免重复的三元组。
#include <vector> #include <algorithm> using namespace std; class Solution { public: vector<vector<int>> threeSum(vector<int>& nums) { vector<vector<int>> result; sort(nums.begin(), nums.end()); int n = nums.size(); for (int i = 0; i < n - 2; ++i) { // 跳过重复的起始元素 if (i > 0 && nums[i] == nums[i-1]) continue; if (nums[i] > 0) break; // 优化:后续元素不可能组成和为0的三元组 int left = i + 1, right = n - 1; while (left < right) { int sum = nums[i] + nums[left] + nums[right]; if (sum == 0) { result.push_back({nums[i], nums[left], nums[right]}); // 跳过重复的left和right while (left < right && nums[left] == nums[left + 1]) ++left; while (left < right && nums[right] == nums[right - 1]) --right; ++left; --right; } else if (sum < 0) { ++left; } else { --right; } } } return result; } };
复杂度分析
时间复杂度:O(n²),其中排序的时间复杂度为 O(n log n),外层循环和双指针遍历的时间复杂度为 O(n²)。
空间复杂度:O(1) 或 O(n),取决于排序算法的实现。