关于模型上下文协议(MCP),开发者必问的 5 个关键问题
自 2024 年底 Anthropic 推出模型上下文协议(MCP)以来,它已成为人工智能集成领域最受关注的发展之一。在 AI 领域,关于 MCP 的开发者观点层出不穷,有人盛赞,也有人指出其不足,而实际上两者都有一定道理。
在 MCP 的 adoption 过程中,一种常见模式是:最初的怀疑会逐渐转变为认可 —— 这个协议确实解决了其他方法无法解决的架构难题。以下是开发者在考虑将 MCP 引入生产环境时值得关注的关键问题。
1. 为什么要使用 MCP 而不是其他替代方案?
大多数考虑 MCP 的开发者,其实已经熟悉 OpenAI 的自定义 GPTs、普通函数调用、带函数调用的响应 API,以及与 Google Drive 等服务的硬编码连接等实现方式。问题并非 MCP 是否会完全取代这些方法(实际上,底层仍可使用带函数调用的响应 API 连接 MCP),关键在于最终形成的技术栈。
尽管有诸多炒作,但事实是:MCP 并非巨大的技术飞跃。它本质上是以大型语言模型(LLMs)可理解的方式 “包装” 现有 API。当然,很多服务已有模型可使用的 OpenAPI 规范,对于小型或个人项目,认为 MCP “没什么大不了” 的看法有一定合理性。
但在构建需要连接多个生态系统数据源的分析工具等场景时,MCP 的实际价值就凸显出来了。没有 MCP,需为每个数据源和每个要支持的 LLM 编写自定义集成;而有了 MCP,只需实现一次数据源连接,所有兼容的 AI 客户端都能使用。
2. 本地与远程 MCP 部署:在生产中的实际权衡是什么?
这是参考服务器与现实应用存在差距的地方。使用 stdio 编程语言进行本地 MCP 部署很容易运行:为每个 MCP 服务器生成子进程,通过 stdin/stdout 通信,这对技术人员很友