CVPR 2025 论文解读:DiC —— 重新思考扩散模型中的 Conv3×3 设计
论文标题:DiC: Rethinking Conv3x3 Designs in Diffusion Models
作者:Yuchuan Tian, Jing Han, Chengcheng Wang, Yuchen Liang, Chao Xu, Hanting Chen
会议:CVPR 2025 Poster Session
论文链接:CVPR OpenAccess PDF | Arxiv
🧭 一、研究背景
过去三年,扩散模型(Diffusion Models, DMs)成为图像生成的核心技术,从 DDPM、DDIM 到 Stable Diffusion、Imagen,其核心架构也在不断演进。
- 早期主流架构:基于 U-Net 的卷积神经网络(ConvNet),以 3×3 卷积为核心。优点是实现简单、推理速度快,但在表达长程依赖时有不足。
- 近期趋势:越来越多研究转向 Transformer 架构(如