CVPR 2025 论文解读:DiC —— 重新思考扩散模型中的 Conv3×3 设计

CVPR 2025 论文解读:DiC —— 重新思考扩散模型中的 Conv3×3 设计

论文标题:DiC: Rethinking Conv3x3 Designs in Diffusion Models
作者:Yuchuan Tian, Jing Han, Chengcheng Wang, Yuchen Liang, Chao Xu, Hanting Chen
会议:CVPR 2025 Poster Session
论文链接CVPR OpenAccess PDF | Arxiv


🧭 一、研究背景

过去三年,扩散模型(Diffusion Models, DMs)成为图像生成的核心技术,从 DDPM、DDIMStable Diffusion、Imagen,其核心架构也在不断演进。

  • 早期主流架构:基于 U-Net 的卷积神经网络(ConvNet),以 3×3 卷积为核心。优点是实现简单、推理速度快,但在表达长程依赖时有不足。
  • 近期趋势:越来越多研究转向 Transformer 架构(如
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值