题目:
以数组 intervals 表示若干个区间的集合,其中单个区间为 intervals[i] = [starti, endi] 。请你合并所有重叠的区间,并返回 一个不重叠的区间数组,该数组需恰好覆盖输入中的所有区间 。
示例 1:
输入:intervals = [[1,3],[2,6],[8,10],[15,18]]
输出:[[1,6],[8,10],[15,18]]
解释:区间 [1,3] 和 [2,6] 重叠, 将它们合并为 [1,6].
示例 2:
输入:intervals = [[1,4],[4,5]]
输出:[[1,5]]
解释:区间 [1,4] 和 [4,5] 可被视为重叠区间。
提示:
-
1 <= intervals.length <= 104
-
intervals[i].length == 2
-
0 <= starti <= endi <= 104
思路如下:
首先,为方便合并,把区间按照左端点从小到大排序。排序后,在合并过程中无需更新当前合并区间的左端点。
其次,合并时,如果进入新数组区间的右端点大于等于未进入数组区间的左端点,那么说明两者区间有重叠或者相连,可以合并,更新区间的右端点。反之,两者没有重叠,直接把危未进入新数组区间加入新数组。
最近,返回新数组。
题解如下:
class Solution:
def merge(self, intervals):
"""
:type: intervals: List[List[int]]
:rtype: List[List[int]]
"""
intervals.sort(key=lambda p: p[0]) # 按照左端点从小到大排序
ans = []
for p in intervals:
if ans and p[0] <= ans[-1][1]: # 可以合并
ans[-1][1] = max(ans[-1][1], p[1]) # 更新右端点最大值
else: # 不相交,无法合并
ans.append(p) # 新的合并区间
return ans
示例流程:
-
把 intervals[0] 加入答案。注意,答案的最后一个区间表示当前正在合并的区间。
-
遍历到 intervals[1]=[2,6],由于左端点 2 不超过当前合并区间的右端点 3,可以合并。由于右端点 6>3,那么更新当前合并区间的右端点为 6。注意,由于我们已经按照左端点排序,所以 intervals[1] 的左端点 2 必然大于等于合并区间的左端点,所以无需更新当前合并区间的左端点。
-
遍历到 intervals[2]=[8,10],由于左端点 8 大于当前合并区间的右端点 6,无法合并(两个区间不相交)。再次利用区间按照左端点排序的性质,更后面的区间的左端点也大于 6,无法与当前合并区间相交,所以当前合并区间 [1,6] 就固定下来了,把新的合并区间 [8,10] 加入答案。
-
遍历到 intervals[3]=[15,18],由于左端点 15 大于当前合并区间的右端点 10,无法合并(两个区间不相交),我们找到了一个新的合并区间 [15,18] 加入答案。
上述算法同时说明,按照左端点排序后,合并的区间一定是 intervals 中的连续子数组。