封装红黑树实现mymap和myset
一、源码及框架分析
SGI-STL30版本源代码,map和set的源代码在map/set/stl_map.h/stl_set.h/stl_tree.h等几个头文件中。
map和set的实现结构框架核心部分截取出来如下:
// set
#ifndef __SGI_STL_INTERNAL_TREE_H
#include <stl_tree.h>
#endif
#include <stl_set.h>
#include <stl_multiset.h>
// map
#ifndef __SGI_STL_INTERNAL_TREE_H
#include <stl_tree.h>
#endif
#include <stl_map.h>
#include <stl_multimap.h>
// stl_set.h
template <class Key, class Compare = less<Key>, class Alloc = alloc>
class set {
public:
// typedefs:
typedef Key key_type;
typedef Key value_type;
private:
typedef rb_tree<key_type, value_type,
identity<value_type>, key_compare, Alloc> rep_type;
rep_type t; // red-black tree representing set
};
// stl_map.h
template <class Key, class T, class Compare = less<Key>, class Alloc = alloc>
class map {
public:
// typedefs:
typedef Key key_type;
typedef T mapped_type;
typedef pair<const Key, T> value_type;
private:
typedef rb_tree<key_type, value_type,
select1st<value_type>, key_compare, Alloc> rep_type;
rep_type t; // red-black tree representing map
};
// stl_tree.h
struct __rb_tree_node_base
{
typedef __rb_tree_color_type color_type;
typedef __rb_tree_node_base* base_ptr;
color_type color;
base_ptr parent;
base_ptr left;
base_ptr right;
};
// stl_tree.h
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc
= alloc>
class rb_tree {
protected:
typedef void* void_pointer;
typedef __rb_tree_node_base* base_ptr;
typedef __rb_tree_node<Value> rb_tree_node;
typedef rb_tree_node* link_type;
typedef Key key_type;
typedef Value value_type;
public:
// insert⽤的是第⼆个模板参数左形参
pair<iterator, bool> insert_unique(const value_type& x);
// erase和find⽤第⼀个模板参数做形参
size_type erase(const key_type& x);
iterator find(const key_type& x);
protected:
size_type node_count; // keeps track of size of tree
link_type header;
};
template <class Value>
struct __rb_tree_node : public __rb_tree_node_base
{
typedef __rb_tree_node<Value>* link_type;
Value value_field;
};
- 通过下图对框架的分析,我们可以看到源码中rb_tree用了一个巧妙的泛型思想实现,rb_tree是实现key的搜索场景,还是key/value的搜索场景不是直接写死的,而是由第二个模板参数Value决定_rb_tree_node中存储的数据类型。
- 红黑树模板只写一份。set实例化rb_tree时第二个模板参数给的是key,map实例化rb_tree时第二个模板参数给的是pair<const key, T>,这样一颗红黑树既可以实现key搜索场景的set,也可以实现key/value搜索场景的map。
- 要注意一下,源码里面模板参数是用T代表value,而内部写的value_type不是我们日常key/value场景中说的value,源码中的value_type反而是红黑树结点中存储的真实的数据的类型。
- rb_tree第二个模板参数Value已经控制了红黑树结点中存储的数据类型,为什么还要传第一个模板参数Key呢?尤其是set,两个模板参数是一样的,这是一个疑问。要注意的是对于map和set,find/erase时的函数参数都是Key,所以第一个模板参数是传给find/erase等函数做形参的类型的。对于set而言两个参数是一样的,但是对于map而言就完全不一样了,map insert的是pair对象,但是find和ease的是Key对象。
- 吐槽一下,这里源码命名风格比较乱,set模板参数用的Key命名,map用的是Key和T命名,而rb_tree用的又是Key和Value,可见大佬有时写代码也不规范,乱弹琴。
二、模拟实现map和set
实现步骤:
- 实现红黑树——上节课实现了
- 封装map和set框架,解决KeyOfT——下面实现步骤中的第一步
- iterator
- const_iterator
- key不支持修改的问题
- operator[]
1、实现出复用红黑树的框架,并支持insert
- 参考源码框架,map和set复用之前我们实现的红黑树。
- 我们这里相比源码调整一下,key参数就用K,value参数就用V,红黑树中的数据类型,我们使用T。
- 其次因为RBTree实现了泛型不知道T参数导致是K,还是pair<K, V>,那么insert内部进行插入逻辑比较时,就没办法进行比较,因为pair的默认支持的是key和value一起参与比较,我们需要时的任何时候只比较key,所以我们在map和set层分别实现一个MapKeyOfT和SetKeyOfT的仿函数传给RBTree的KeyOfT,然后RBTree中通过KeyOfT仿函数取出T类型对象中的key,再进行比较,具体细节参考如下代码实现。
// mymap.h
namespace zsy
{
template<class K, class V>
class map
{
struct MapKeyOfT
{
const K& operator()(const pair<K, V>& kv)
{
return kv.first;
}
};
public:
bool insert(const pair<K, V>& kv)
{
return _t.Insert(kv);
}
private:
RBTree<K, pair<K, V>, MapKeyOfT> _t;
};
// 测试mymap
void test_map()
{
map<int, int> m;
m.insert({ 3, 3 });
m.insert({ 4, 4 });
m.insert({ 2, 2 });
}
}
// myset.h
namespace zsy
{
template<class K>
class set
{
struct SetKeyOfT
{
const K& operator()(const K& key)
{
return key;
}
};
public:
bool insert(const K& key)
{
return _t.Insert(key);
}
private:
RBTree<K, K, SetKeyOfT> _t;
};
// 测试myset
void test_set()
{
set<int> s;
s.insert(12);
s.insert(56);
s.insert(125);
}
}
// RBTree.h
enum Colour
{
RED,
BLACK
};
template<class T>
struct RBTreeNode
{
T _data;
RBTreeNode<T>* _left;
RBTreeNode<T>* _right;
RBTreeNode<T>* _parent;
Colour _col;
RBTreeNode(const T& data)
:_data(data)
,_left(nullptr)
,_right(nullptr)
,_parent(nullptr)
,_col(RED)
{}
};
template<class K, class T, class KeyOfT>
class RBTree
{
typedef RBTreeNode<T> Node;
public:
// 旋转代码的实现跟AVL树是一样的,只是不需要更新平衡因子
bool Insert(const T& data)
{
if (_root == nullptr)
{
_root = new Node(data);
_root->_col = BLACK;
return true;
}
KeyOfT kot;
Node* parent = nullptr;
Node* cur = _root;
while (cur)
{
if (kot(cur->_data) < kot(data))
{
parent = cur;
cur = cur->_right;
}
else if (kot(cur->_data) > kot(data))
{
parent = cur;
cur = cur->_left;
}
else
{
return false;
}
}
cur = new Node(data);
// 新增结点。颜色给红色
cur->_col = RED;
if (kot(parent->_data) < kot(data))
{
parent->_right = cur;
}
else
{
parent->_left = cur;
}
cur->_parent = parent;
//...
return true;
}
};
2、支持iterator的实现
iterator核心源代码
struct __rb_tree_base_iterator
{
typedef __rb_tree_node_base::base_ptr base_ptr;
base_ptr node;
void increment()
{
if (node->right != 0) {
node = node->right;
while (node->left != 0)
node = node->left;
}
else {
base_ptr y = node->parent;
while (node == y->right) {
node = y;
y = y->parent;
}
if (node->right != y)
node = y;
}
}
void decrement()
{
if (node->color == __rb_tree_red &&
node->parent->parent == node)
node = node->right;
else if (node->left != 0) {
base_ptr y = node->left;
while (y->right != 0)
y = y->right;
node = y;
}
else {
base_ptr y = node->parent;
while (node == y->left) {
node = y;
y = y->parent;
}
node = y;
}
}
};
template <class Value, class Ref, class Ptr>
struct __rb_tree_iterator : public __rb_tree_base_iterator
{
typedef Value value_type;
typedef Ref reference;
typedef Ptr pointer;
typedef __rb_tree_iterator<Value, Value&, Value*> iterator;
__rb_tree_iterator() {}
__rb_tree_iterator(link_type x) { node = x; }
__rb_tree_iterator(const iterator& it) { node = it.node; }
reference operator*() const { return link_type(node)->value_field; }
#ifndef __SGI_STL_NO_ARROW_OPERATOR
pointer operator->() const { return &(operator*()); }
#endif /* __SGI_STL_NO_ARROW_OPERATOR */
self& operator++() { increment(); return *this; }
self& operator--() { decrement(); return *this; }
inline bool operator==(const __rb_tree_base_iterator& x,
const __rb_tree_base_iterator& y) {
return x.node == y.node;
}
inline bool operator!=(const __rb_tree_base_iterator& x,
const __rb_tree_base_iterator& y) {
return x.node != y.node;
}
};
iterator实现思路分析
- iterator实现的大框架跟list的iterator思路是一致的,用一个类型封装结点的指针,再通过重载运算符实现,迭代器像指针一样访问的行为。
- 这里的难点是operator++和operator- -的实现。之前使用部分我们分析了,map和set的迭代走的是中序遍历,左子树->根结点->右子树,那么begin()会返回中序第一个结点的iterator也就是10所在结点的迭代器。
- 迭代器++的核心逻辑就是不看全局,只看局部,只考虑当前中序局部要访问的下一个结点。
- 迭代器++时,如果it指向的结点的右子树不为空,代表当前结点已经访问完了,要访问下一个结点是右子树的中序第一个,一棵树中序第一个是最左结点,所以直接找右子树的最左结点即可。
- 迭代器++时,如果it指向的结点的右子树空,代表当前结点已经访问完了且当前结点所在的子树也访问完了,因为按照中序遍历,右子树访问过了说明父亲结点也访问过了,所以要访问的下一个结点在当前结点的祖先(爷爷)里面,所以要沿着当前结点到根的祖先(爷爷)路径向上找。
- 如果当前结点是父亲的左,根据中序左子树->根结点->右子树,那么下一个访问的结点就是当前结点的父亲;如下图:it指向25,25右为空,25是30的左,所以下一个访问的结点就是30。
- 如果当前结点是父亲的右,根据中序左子树->根结点->右子树,当前当前结点所在的子树访问完了,当前结点所在父亲的子树也访问完了,那么下一个访问的需要继续往根的祖先中去找,直到找到孩子是父亲左的那个祖先就是中序要访问的下一个结点。如下图:it指向15,15右为空,15是10的右,15所在子树话访问完了,10所在子树也访问完了,继续往上找,10是18的左,那么下一个访问的结点就是18。
- end()如何表示呢?如下图:当it指向50时,++it时,50是40的右,40是30的右,30是18的右,18到根没有父亲,没有找到孩子是父亲左的那个祖先,这时父亲为空了,那我们就把it中的结点指针置为nullptr,我们用nullptr去充当end。需要注意的是stl源码中,红黑树增加了一个哨兵位头结点作为end(),标记为红色,这哨兵位头结点和根互为父亲,左指向最左结点,右指向最右结点,但是维护起来很麻烦,插入新结点可能会导致最左/右结点改变。相比我们用nullptr作为end(),差别不大,他能实现的,我们也能实现。只是- -end()判断到结点时空,特殊处理一下,让迭代器结点指向最右结点。具体参考迭代器- -实现。
- 迭代器- -的实现跟++的思路完全类似,逻辑正好反过来即可,因为他访问顺序是右子树->根结点->左子树,具体参考下面代码实现。
- set的iterator也不支持修改,我们把set的第二个模板参数改成const K即可, RBTree<K,const K, SetKeyOfT> _t;
- map的iterator不支持修改key但是可以修改value,我们把map的第二个模板参数pair的第一个参数改成const K即可, RBTree<K, pair<const K, V>, MapKeyOfT> _t;
- 支持完整的迭代器还有很多细节需要修改,具体参考下面的代码。
// iterator
template<class T>
struct RBTreeIterator
{
typedef RBTreeNode<T> Node;
typedef RBTreeIterator<T> Self;
Node* _node;
Node* _root;
RBTreeIterator(Node* node, Node* root)
:_node(node)
,_root(root)
{}
T& operator*()
{
return _node->_data;
}
T* operator->()
{
return &_node->_data;
}
Self& operator++()
{
if (_node->_right)
{
// 1、当前结点的右不为空
// 下一个就是右子树中序第一个(最左结点)
Node* minLeft = _node->_right;
while (minLeft->_left)
{
minLeft = minLeft->_left;
}
_node = minLeft;
}
else
{
// 2、当前结点的右为空
// 下一个就是当前结点的祖先,孩子是父亲左的那个祖先
Node* cur = _node;
Node* parent = cur->_parent;
// parent为空,cur是根,说明当前树走完了,nullptr给_node,nullptr作为end()
while (parent && cur == parent->_right)
{
cur = parent;
parent = parent->_parent;
}
_node = parent;
}
return *this;
}
Self& operator--()
{
if (_node == nullptr)
{
// --end()到最右结点
Node* maxRight = _root;
while (maxRight && maxRight->_right)
{
maxRight = maxRight->_right;
}
_node = maxRight;
}
else if (_node->_left)
{
// 左子树不为空,中序左子树最后⼀个
Node* rightMost = _node->_left;
while (rightMost->_right)
{
rightMost = rightMost->_right;
}
_node = rightMost;
}
else
{
// 孩子是⽗亲右的那个祖先
Node* cur = _node;
Node* parent = cur->_parent;
while (parent && cur == parent->_left)
{
cur = parent;
parent = cur->_parent;
}
_node = parent;
}
return *this;
}
bool operator==(const Self& s) const
{
return _node == s._node;
}
bool operator!=(const Self& s) const
{
return _node != s._node;
}
};
// 再修改成const_iterator
template<class T, class Ref, class Ptr>
struct RBTreeIterator
{
typedef RBTreeNode<T> Node;
typedef RBTreeIterator<T, Ref, Ptr> Self;
Node* _node;
Node* _root;
RBTreeIterator(Node* node, Node* root)
:_node(node)
,_root(root)
{}
Ref operator*()
{
return _node->_data;
}
Ptr operator->()
{
return &_node->_data;
}
// ...
};
key不支持修改的问题
目前代码中的普通迭代器可以修改Key的值且并不报错,但是这并不符合搜索树的规则,例如:
set<int>::iterator it = s.begin();
while (it != s.end())
{
*it = 10;// 不符合规则
cout << *it << " ";
++it;
}
修改:类型被const修饰,Key就不能被修改了
// 第一个模板参数带const,保证key不能被修改
RBTree<K, const K, SetKeyOfT> _t;
typedef typename RBTree<K, const K, SetKeyOfT>::Iterator iterator;
typedef typename RBTree<K, const K, SetKeyOfT>::ConstIterator const_iterator;
// pair可以修改,pair的K类型用const修饰,保证key不能被修改
RBTree<K, pair<const K, V>, MapKeyOfT> _t;
typedef typename RBTree<K, pair<const K, V>, MapKeyOfT>::Iterator iterator;
typedef typename RBTree<K, pair<const K, V>, MapKeyOfT>::ConstIterator const_iterator;
3、map支持[]
- map要支持[]主要需要修改insert返回值支持,修改RBtree中的insert返回值为
pair<Iterator, bool> Insert(const T& data)
- 有了insert支持[]实现就很简单了,具体参考下面代码实现。
4、bit::map和bit::set代码实现
// myset.h
#include "RBTree.h"
namespace zsy
{
template<class K>
class set
{
struct SetKeyOfT
{
const K& operator()(const K& key)
{
return key;
}
};
public:
typedef typename RBTree<K, const K, SetKeyOfT>::Iterator iterator;
typedef typename RBTree<K, const K, SetKeyOfT>::ConstIterator const_iterator;
iterator begin()
{
return _t.Begin();
}
iterator end()
{
return _t.End();
}
const_iterator begin() const
{
return _t.Begin();
}
const_iterator end() const
{
return _t.End();
}
pair<iterator, bool> insert(const K& key)
{
return _t.Insert(key);
}
iterator find(const K& key)
{
return _t.Find(key);
}
private:
// 第一个模板参数带const,保证key不能被修改
RBTree<K, const K, SetKeyOfT> _t;
};
void Print1(set<int>& s)
{
set<int>::iterator it = s.end();
while (it != s.begin())
{
--it;
cout << *it << " ";
}
cout << endl;
}
void Print2(const set<int>& s)
{
set<int>::const_iterator it = s.end();
while (it != s.begin())
{
--it;
// 不能修改
//*it = 10;
cout << *it << " ";
}
cout << endl;
}
void test_set()
{
set<int> s;
s.insert(12);
s.insert(56);
s.insert(125);
s.insert(222);
s.insert(24);
s.insert(56);
s.insert(98);
set<int>::iterator it = s.begin();
while (it != s.end())
{
cout << *it << " ";
++it;
}
cout << endl;
// 倒着遍历
Print1(s);
Print2(s);
}
}
// mymap.h
#include "RBTree.h"
namespace zsy
{
template<class K, class V>
class map
{
struct MapKeyOfT
{
const K& operator()(const pair<K, V>& kv)
{
return kv.first;
}
};
public:
typedef typename RBTree<K, pair<const K, V>, MapKeyOfT>::Iterator iterator;
typedef typename RBTree<K, pair<const K, V>, MapKeyOfT>::ConstIterator const_iterator;
iterator begin()
{
return _t.Begin();
}
iterator end()
{
return _t.End();
}
const_iterator begin() const
{
return _t.Begin();
}
const_iterator end() const
{
return _t.End();
}
pair<iterator, bool> insert(const pair<K, V>& kv)
{
return _t.Insert(kv);
}
iterator find(const K& key)
{
return _t.Find(key);
}
V& operator[](const K& key)
{
pair<iterator, bool> ret = _t.Insert({ key, V() });
iterator it = ret.first;
return it->second;
// return ret.first->second;
}
private:
// pair可以修改,pair的K类型用const修饰,保证key不能被修改
RBTree<K, pair<const K, V>, MapKeyOfT> _t;
};
void Print(const map<string, string>& m)
{
for (auto& e : m)
{
cout << e.first << ":" << e.second << endl;
}
}
void test_map()
{
map<string, string> m;
m.insert({ "sort", "排序" });
m.insert({ "left", "左边" });
m.insert({ "right", "右边" });
// 插入
m["insert"];
for (auto& e : m)
{
cout << e.first << ":" << e.second << endl;
}
cout << endl;
// 修改
m["insert"] = "插入";
for (auto& e : m)
{
cout << e.first << ":" << e.second << endl;
}
cout << endl;
// 插入+修改
m["string"] = "字符串";
// 支持迭代器就支持范围for
//for (auto& e : m)
//{
// cout << e.first << ":" << e.second << endl;
//}
//cout << endl;
//Print(m);
// 利用[]插⼊+修改功能,巧妙实现统计水果出现的次数
string arr[] = { "苹果", "西瓜", "苹果", "西瓜", "苹果", "苹果", "西瓜","苹果", "香蕉", "苹果", "香蕉" };
map<string, int> countMap;
for (const auto& str : arr)
{
// []先查找⽔果在不在map中
// 1、不在,说明⽔果第⼀次出现,则插入{⽔果, 0},同时返回次数的引⽤,++⼀下就变成1次了
// 2、在,则返回⽔果对应的次数++
countMap[str]++;
}
for (const auto& e : countMap)
{
cout << e.first << ":" << e.second << endl;
}
cout << endl;
}
}
// RBTree.h
#include <iostream>
using namespace std;
enum Colour
{
RED,
BLACK
};
template<class T>
struct RBTreeNode
{
T _data;
RBTreeNode<T>* _left;
RBTreeNode<T>* _right;
RBTreeNode<T>* _parent;
Colour _col;
RBTreeNode(const T& data)
:_data(data)
,_left(nullptr)
,_right(nullptr)
,_parent(nullptr)
,_col(RED)
{}
};
template<class T, class Ref, class Ptr>
struct RBTreeIterator
{
typedef RBTreeNode<T> Node;
typedef RBTreeIterator<T, Ref, Ptr> Self;
Node* _node;
Node* _root;
RBTreeIterator(Node* node, Node* root)
:_node(node)
,_root(root)
{}
Ref operator*()
{
return _node->_data;
}
Ptr operator->()
{
return &_node->_data;
}
Self& operator++()
{
if (_node->_right)
{
// 1、当前结点的右不为空
// 下一个就是右子树中序第一个(最左结点)
Node* minLeft = _node->_right;
while (minLeft->_left)
{
minLeft = minLeft->_left;
}
_node = minLeft;
}
else
{
// 2、当前结点的右为空
// 下一个就是当前结点的祖先,孩子是父亲左的那个祖先
Node* cur = _node;
Node* parent = cur->_parent;
// parent为空,cur是根,说明当前树走完了,nullptr给_node,nullptr作为end()
while (parent && cur == parent->_right)
{
cur = parent;
parent = parent->_parent;
}
_node = parent;
}
return *this;
}
Self& operator--()
{
if (_node == nullptr)
{
// --end()到最右结点
Node* maxRight = _root;
while (maxRight && maxRight->_right)
{
maxRight = maxRight->_right;
}
_node = maxRight;
}
else if (_node->_left)
{
// 左子树不为空,中序左子树最后⼀个
Node* rightMost = _node->_left;
while (rightMost->_right)
{
rightMost = rightMost->_right;
}
_node = rightMost;
}
else
{
// 孩子是⽗亲右的那个祖先
Node* cur = _node;
Node* parent = cur->_parent;
while (parent && cur == parent->_left)
{
cur = parent;
parent = cur->_parent;
}
_node = parent;
}
return *this;
}
bool operator==(const Self& s) const
{
return _node == s._node;
}
bool operator!=(const Self& s) const
{
return _node != s._node;
}
};
template<class K, class T, class KeyOfT>
class RBTree
{
typedef RBTreeNode<T> Node;
public:
typedef RBTreeIterator<T, T&, T*> Iterator;
typedef RBTreeIterator<T, const T&, const T*> ConstIterator;
Iterator Begin()
{
Node* minLeft = _root;
while (minLeft && minLeft->_left)
{
minLeft = minLeft->_left;
}
return Iterator(minLeft, _root);
}
Iterator End()
{
return Iterator(nullptr, _root);
}
ConstIterator Begin() const
{
Node* minLeft = _root;
while (minLeft && minLeft->_left)
{
minLeft = minLeft->_left;
}
return ConstIterator(minLeft, _root);
}
ConstIterator End() const
{
return ConstIterator(nullptr, _root);
}
RBTree() = default;
~RBTree()
{
Destroy(_root);
_root = nullptr;
}
// 旋转代码的实现跟AVL树是一样的,只是不需要更新平衡因子
pair<Iterator, bool> Insert(const T& data)
{
if (_root == nullptr)
{
_root = new Node(data);
_root->_col = BLACK;
return { Iterator(_root, _root), true };
}
KeyOfT kot;
Node* parent = nullptr;
Node* cur = _root;
while (cur)
{
if (kot(cur->_data) < kot(data))
{
parent = cur;
cur = cur->_right;
}
else if (kot(cur->_data) > kot(data))
{
parent = cur;
cur = cur->_left;
}
else
{
// 返回已经存在的与Key相同的结点的迭代器和false
return { Iterator(cur, _root), false };
}
}
cur = new Node(data);
Node* newNode = cur;
// 新增结点。颜色给红色
cur->_col = RED;
if (kot(parent->_data) < kot(data))
{
parent->_right = cur;
}
else
{
parent->_left = cur;
}
cur->_parent = parent;
while (parent && parent->_col == RED)
{
Node* grandfather = parent->_parent;
// g
// p u
if (parent == grandfather->_left)
{
Node* uncle = grandfather->_right;
if (uncle && uncle->_col == RED)
{
// u存在且为红 -》变色再继续往上处理
uncle->_col = parent->_col = BLACK;
grandfather->_col = RED;
cur = grandfather;
parent = cur->_parent;// cur为根,父亲就不存在(空),所以加一个parent不为空的条件就不会进入while循环
}
else
{
// u存在且为黑或不存在 -》旋转+变色
if (cur == parent->_left)
{
// g
// p u
//c
// 单旋
RotateR(grandfather);
parent->_col = BLACK;
grandfather->_col = RED;
}
else
{
// g
// p u
// c
// 双旋
RotateL(parent);
RotateR(grandfather);
cur->_col = BLACK;
grandfather->_col = RED;
}
break;
}
}
else// parent == grandfather->_right
{
// g
// u p
Node* uncle = grandfather->_left;
// 叔叔存在且为红,-》变色即可
if (uncle && uncle->_col == RED)
{
parent->_col = uncle->_col = BLACK;
grandfather->_col = RED;
// 继续往上处理
cur = grandfather;
parent = cur->_parent;
}
else // 叔叔不存在,或者存在且为黑
{
// 情况二:叔叔不存在或者存在且为黑
// 旋转+变色
// g
// u p
// c
if (cur == parent->_right)
{
RotateL(grandfather);
parent->_col = BLACK;
grandfather->_col = RED;
}
else
{
// g
// u p
// c
RotateR(parent);
RotateL(grandfather);
cur->_col = BLACK;
grandfather->_col = RED;
}
break;
}
}
}
_root->_col = BLACK;
return { Iterator(newNode, _root), true };
}
Iterator Find(const K& key)
{
KeyOfT kot;
Node* cur = _root;
while (cur)
{
if (kot(cur->_data) < key)
{
cur = cur->_right;
}
else if (kot(cur->_data) > key)
{
cur = cur->_left;
}
else
{
return Iterator(cur, _root);
}
}
return End();
}
void InOrder()
{
_InOrder(_root);
cout << endl;
}
int Height()
{
return _Height(_root);
}
// 计算实际插入的值的个数,不支持值冗余
int Size()
{
return _Size(_root);
}
private:
int _Size(Node* root)
{
return root == nullptr ? 0 :
_Size(root->_left) + _Size(root->_right) + 1;
}
int _Height(Node* root)
{
if (nullptr == root)
return 0;
int leftHeight = _Height(root->_left);
int rightHeight = _Height(root->_right);
return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;
}
void _InOrder(Node* root)
{
if (root == nullptr)
return;
_InOrder(root->_left);
cout << root->_kv.first << " ";
_InOrder(root->_right);
}
void RotateR(Node* parent)
{
Node* subL = parent->_left;
Node* subLR = subL->_right;
// 需要注意除了要修改孩子指针指向,还要修改父亲
parent->_left = subLR;
if (subLR)
subLR->_parent = parent;
Node* parentParent = parent->_parent;
subL->_right = parent;
parent->_parent = subL;
// parent有可能是整棵树的根,也可能是局部的子树
// 如果是整棵树的根,要修改_root
// 如果是局部的指针要跟上一层链接
if (parentParent == nullptr)
{
_root = subL;
subL->_parent = nullptr;
}
else
{
if (parentParent->_left == parent)
{
parentParent->_left = subL;
}
else
{
parentParent->_right = subL;
}
subL->_parent = parentParent;
}
}
void RotateL(Node* parent)
{
Node* subR = parent->_right;
Node* subRL = subR->_left;
parent->_right = subRL;
if (subRL)
subRL->_parent = parent;
Node* parentParent = parent->_parent;
subR->_left = parent;
parent->_parent = subR;
if (parentParent == nullptr)
{
_root = subR;
subR->_parent = nullptr;
}
else
{
if (parentParent->_left == parent)
{
parentParent->_left = subR;
}
else
{
parentParent->_right = subR;
}
subR->_parent = parentParent;
}
}
void Destroy(Node* root)
{
if (root == nullptr)
return;
Destroy(root->_left);
Destroy(root->_right);
delete root;
}
private:
Node* _root = nullptr;
};
// Test.cpp
#include "mymap.h"
#include "myset.h"
int main()
{
zsy::test_set();
zsy::test_map();
return 0;
}