
2—ML(machine learning)机器学习
文章平均质量分 60
机器学习
点亮~黑夜
人工智能领域资深专家
本博客主要分享linux、python、人工智能、SLAM(主要是计算机视觉:目标检测、图像分割、人脸识别、GAN等)等前沿技术。同时大家相互交流的机会,疑难杂症、程序bug等等问题
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
ML-1 逻辑回归和梯度下降
假设你是一个大学系的管理员,你想根据两次考试的结果来决定每个申请人的录取机会。你有以前的申请人的历史数据,你可以用它作为逻辑回归的训练集。对于每一个培训例子,你有两个考试的申请人的分数和录取决定。浮动仍然比较大,我们来尝试下对数据进行标准化 将数据按其属性(按列进行)减去其均值,然后除以其方差。最后得到的结果是,对每个属性/每列来说所有数据都聚集在0附近,方差值为1。随机梯度下降更快,但是我们需要迭代的次数也需要更多,所以还是用batch的比较合适!更多的迭代次数会使得损失下降的更多!原创 2024-10-30 09:26:52 · 975 阅读 · 0 评论 -
ML-2 机器学习算法
就是利用正交变换,相当于建立一个新的坐标系,然后把数据映射到新的坐标系中,或者说是投影到新的坐标系中,这样可以密密麻麻的一团数据进行降维,也会使数据变得更容易划分。极大似然估计,其实有点类似梯度下降,是一个不断更新期望的过程,就是不但更新均值,一开始先设定一个大概可能的均值,然后,进行更新,直到其基本不变化的时候,就可以了。(机器学习笔记和新的体会,自己的一些理解,后续不断慢慢完善)原创 2024-10-30 09:26:21 · 121 阅读 · 0 评论 -
Scikit-learn使用总结
在机器学习和数据挖掘的应用中,scikit-learn是一个功能强大的python包。在数据量不是过大的情况下,可以解决大部分问题。学习使用scikit-learn的过程中,我自己也在补充着机器学习和数据挖掘的知识。这里根据自己学习sklearn的经验,我做一个总结的笔记。另外,我也想把这篇笔记一直更新下去。fit():训练算法,设置内部参数。接收训练集和类别两个参数。predict():预测测试集类别,参数为测试集。原创 2024-10-30 09:25:37 · 1049 阅读 · 0 评论 -
使用netron对TensorFlow、Pytorch、Keras、PaddlePaddle、MXNet、Caffe、ONNX、UFF、TNN、ncnn、OpenVINO等模型的可视化
会直接跳转到浏览器中,可视化,如果没有跳转你就自己把url粘贴到浏览器中即可!2、下载完直接安装,界面和上面在线的Netron一样,直接导入模型可视化即可。Netron几乎支持可视化所有的主流的深度学习框架预训练模型,2、直接使用start(pred_model)函数可视化。1、下载windows 的Netron的exe软件包。还有一些其他函数的使用,自从查看具体使用;下测试,其他环境同理安装软甲即可!从可视化话的结果可以看出如下信息。使用API可视化,首先需要使用。1、安装Netron。原创 2024-10-30 09:25:09 · 752 阅读 · 0 评论 -
机器学习中正则化项L1和L2的直观理解
https://blog.csdn.net/kicilove/article/details/78051533#commentBoxhttps://blog.csdn.net/jinping_shi/article/details/52433975https://www.cnblogs.com/jclian91/p/9824310.htmlhttps://zhuanlan.zhihu.com/p/48426076原创 2024-10-30 09:24:32 · 112 阅读 · 0 评论