以下是一个基于PyTorch和YOLOv5的完整代码示例,涵盖了数据准备、模型训练、验证和评估等关键步骤。我们将使用YOLOv5作为目标检测模型,因为它在实时检测任务中表现出色。
1. 环境准备
首先,确保你已经安装了必要的库和工具。你可以使用以下命令安装所需的库:
pip install torch torchvision opencv-python pandas
pip install -U albumentations
pip install -U pyyaml
pip install -U yolov5
2. 数据准备
假设你的数据集目录结构如下:
dataset/
├── images/
│ ├── train/
│ └── val/
└── labels/
├── train/
└── val/
其中,images
文件夹包含训练和验证的图像,labels
文件夹包含相应的标签文件(YOLO格式的txt文件)。
3. 创建数据配置文件
YOLOv5需要一个数据配置文件来指定数据集的路径和其他相关信息。创建一个名为fabric_defects.yaml
的文件,内容如下:
# Fabric Defects Dataset Configuration
# Path to the dataset directory
path: ./dataset
# Training and validation image directories
train: images/train
val: images/val
# Number of classes
nc: 6
# Class names
names:
0: 断经
1: 断纬
2: 缩纬
3: 缩经
4: 擦伤
5: 污渍
4. 训练模型
使用YOLOv5进行训练非常简单。你可以使用以下命令来启动训练:
yolo train data=fabric_defects.yaml model=yolov5s.pt epochs=100 imgsz=640
解释:
data=fabric_defects.yaml
: 指定数据配置文件。model=yolov5s.pt
: 使用预训练的YOLOv5小模型(yolov5s
)。你可以选择其他大小的模型,如yolov5m
、yolov5l
或yolov5x
。epochs=100
: 训练的轮数。imgsz=640
: 图像的尺寸。
5. 评估模型
训练完成后,你可以使用以下命令来评估模型在验证集上的性能:
yolo val data=fabric_defects.yaml model=runs/detect/train/weights/best.pt imgsz=640
解释:
data=fabric_defects.yaml
: 指定数据配置文件。model=runs/detect/train/weights/best.pt
: 指定训练过程中保存的最佳模型权重文件。imgsz=640
: 图像的尺寸。
6. 可视化预测结果
你可以使用以下Python代码来可视化模型的预测结果:
import cv2
import torch
from yolov5.models.experimental import attempt_load
from yolov5.utils.general import non_max_suppression, scale_coords
from yolov5.utils.plots import Annotator
# 加载模型
model = attempt_load('runs/detect/train/weights/best.pt', map_location='cuda' if torch.cuda.is_available() else 'cpu')
model.eval()
# 读取图像
image_path = 'dataset/images/val/your_image.jpg'
image = cv2.imread(image_path)
# 图像预处理
img = cv2.resize(image, (640, 640))
img = img.transpose(2, 0, 1) # HWC to CHW
img = img.astype(np.float32) / 255.0
img = np.expand_dims(img, axis=0)
img = torch.from_numpy(img).to('cuda' if torch.cuda.is_available() else 'cpu')
# 进行预测
with torch.no_grad():
pred = model(img)[0]
# 非极大值抑制
pred = non_max_suppression(pred, conf_thres=0.25, iou_thres=0.45)
# 可视化预测结果
annotator = Annotator(image.copy(), line_width=2, example='断经 断纬 缩纬 缩经 擦伤 污渍')
for det in pred:
if det is not None and len(det):
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], image.shape).round()
for *xyxy, conf, cls in reversed(det):
c = int(cls)
label = f'{model.names[c]} {conf:.2f}'
annotator.box_label(xyxy, label, color=(0, 255, 0))
# 显示图像
cv2.imshow('Prediction', annotator.result())
cv2.waitKey(0)
cv2.destroyAllWindows()
7. 总结
以上步骤提供了一个完整的框架,用于使用YOLOv5训练织物疵点检测数据集。代码包括数据准备、模型训练、评估和结果可视化等多个步骤。希望这些代码对你有帮助!如果有任何问题或需要进一步的调整,请随时告诉我。