使用深度学习框架目标检测算法yolov8训练交通事故数据集,通过车辆碰撞数据集的权重 推理识别检测车辆碰撞及交通事故

如何使用深度学习框架目标检测算法yolov8训练交通事故数据集,通过车辆碰撞数据集的权重 推理识别检测车辆碰撞及交通事故

**交通事故数据集
交通事故数据集 标签为traffic


以下文字及代码仅供参考学习使用。
在这里插入图片描述
1
在这里插入图片描述
1
在这里插入图片描述
1
在这里插入图片描述
使用YOLOv8训练交通事故数据集,从环境设置开始,然后介绍如何准备和处理数据集,最后是如何训练模型。以下是详细的步骤指南。

文字及代码仅供参考学习使用。

环境设置

1. 安装CUDA驱动

确保你的系统已经安装了合适的CUDA驱动。你可以访问NVIDIA官网根据你的操作系统选择合适的版本进行下载和安装。

2. 安装Anaconda

如果还没有安装Anaconda,可以从Anaconda官网下载适合你操作系统的版本并安装。

3. 创建Python虚拟环境

打开终端或命令提示符,创建一个新的conda环境,并激活它:

conda create --name yolo-env python=3.8
conda activate yolo-env
4. 安装必要的依赖项

在激活的环境中,使用pip安装必要的库:

pip install torch torchvision torchaudio  # 根据你的CUDA版本选择合适的命令
pip install ultralytics opencv-python

数据集准备

假设你的数据集位于dataset/traffic-accident目录下,结构如下:

dataset/
└── traffic-accident/
    ├── images/
    │   ├── train/
    │   └── val/
    └── labels/
        ├── train/
        └── val/

并且有一个dataset.yaml文件定义了数据集路径和类别信息:

train: ./dataset/traffic-accident/images/train
val: ./dataset/traffic-accident/images/val

nc: 1  # 类别数量
names: ['traffic-accident']  # 类别名称

使用YOLOv8训练模型

1. 下载YOLOv8仓库

克隆Ultralytics的GitHub仓库获取YOLOv8代码:

git clone https://github.com/ultralytics/yolov8.git
cd yolov8
2. 编写训练脚本

创建一个Python脚本train_traffic_accident.py来启动训练过程:

from ultralytics import YOLO

# 加载预训练模型权重或从头开始训练
model = YOLO('yolov8n.yaml')  # 或者 'yolov8n.pt' 如果有预训练权重

# 开始训练
results = model.train(data='path/to/your/dataset.yaml', epochs=50, imgsz=640)

# 可选:评估模型性能
metrics = model.val()
print(metrics.box.map)  # 输出mAP值

请将path/to/your/dataset.yaml替换为你的dataset.yaml文件的实际路径。

3. 执行训练脚本

回到终端,执行以下命令开始训练:

python train_traffic_accident.py

根据你训练好的 YOLOv8 交通事故检测模型权重,你可以构建一个完整的 深度学习交通事故检测系统。该系统可以部署在本地服务器、边缘设备(如 Jetson Nano)或云服务器上,用于实时监控道路情况并识别是否发生交通事故。


✅ 系统目标

  • 实时从摄像头或视频流中读取画面
  • 使用训练好的 YOLOv8 模型进行交通事故检测
  • 如果检测到事故,则发出警报或记录日志
  • 可视化显示检测结果(可选)

🧱 系统组成结构

  1. 数据采集模块:摄像头 / RTSP 视频流 / 本地视频文件
  2. 推理引擎模块:加载训练好的 YOLOv8 权重进行推理
  3. 业务逻辑处理模块:判断是否为交通事故,触发报警机制
  4. 可视化展示模块:绘制检测框并显示/保存结果
  5. 日志与告警模块:记录事件、发送通知等

🛠️ 开发步骤详解

步骤 1:准备训练好的模型权重

假设你已经使用 yolov8n.pt 或你自己训练的 best.pt 完成了训练,并将模型权重保存为:

weights/best.pt

确保你知道你的类别标签,比如:

class_names = ['traffic-accident']

步骤 2:安装依赖库(继续使用之前的环境)

如果你之前创建了虚拟环境 yolo-env,请激活它:

conda activate yolo-env

确保已安装以下库:

pip install ultralytics opencv-python supervision numpy flask
  • ultralytics: 用于加载和运行 YOLOv8 模型
  • opencv-python: 图像处理和视频流读取
  • supervision: 对检测框、标签进行可视化处理
  • flask: 可选,用于搭建 Web 接口服务

步骤 3:编写主程序代码(Python 示例)

示例代码:detect_accident.py
from ultralytics import YOLO
import cv2
import supervision as sv

# 加载模型
model = YOLO("weights/best.pt")

# 打开视频源(0 表示默认摄像头,也可以是RTSP地址)
video_path = 0  # 如:"rtsp://admin:password@ip:554/stream"
cap = cv2.VideoCapture(video_path)

# 设置帧率、分辨率等参数(可选)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)

# 初始化边界框标注器
box_annotator = sv.BoxAnnotator(thickness=2, text_thickness=2, text_scale=1)

while True:
    ret, frame = cap.read()
    if not ret:
        break

    # 使用模型进行预测
    results = model(frame)[0]

    # 提取检测结果
    detections = sv.Detections.from_yolov8(results)

    # 过滤只保留交通事故类别(假设交通事故是第0类)
    accident_detections = detections[detections.class_id == 0]

    # 判断是否检测到交通事故
    if len(accident_detections) > 0:
        print("[警告] 检测到交通事故!")
        # 可以在这里添加发送邮件、短信、写入日志等功能

    # 绘制检测框和标签
    labels = [f"{model.names[class_id]} {confidence:.2f}" for class_id, confidence in zip(detections.class_id, detections.confidence)]
    annotated_frame = box_annotator.annotate(scene=frame, detections=detections, labels=labels)

    # 显示图像
    cv2.imshow("Traffic Accident Detection", annotated_frame)

    # 按 q 键退出
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

# 清理资源
cap.release()
cv2.destroyAllWindows()

步骤 4:运行程序

python detect_accident.py

📡 可选功能扩展

功能描述
报警通知检测到交通事故后通过微信、钉钉、短信等方式通知管理员
存储录像将包含交通事故的画面录制下来作为证据
部署Web界面使用 Flask 或 FastAPI 构建网页查看多个摄像头
边缘部署在 Jetson Nano / Raspberry Pi 上运行轻量模型
多路视频支持同时监控多个路段

💾 数据集格式说明(回顾)

确保你的数据集格式如下:

dataset/
├── images/
│   ├── train/
│   └── val/
├── labels/
│   ├── train/
│   └── val/
└── dataset.yaml

dataset.yaml 内容如下:

train: ./images/train
val: ./images/val

nc: 1
names: ['traffic-accident']


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值