
机器学习与神经网络
文章平均质量分 89
Matlab机器学习与神经网络相关文章
Matlab精灵
跟着精灵走进matlab的世界
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
基于CNN-LSTM的时序预测MATLAB实战
卷积神经网络(CNN)用于提取时间序列数据中的局部空间特征,通过卷积层和池化层的堆叠,CNN能够有效捕获数据中的短期模式和局部依赖关系。设输入序列共有 k 个时间步,LSTM 门控机制 结构为遗忘门、输入门和输出门,xt携带网络输入值 作为向量引入系统,ht 通过隐含层对 LSTM 细胞进 行输出,ct携带着 LSTM 细胞状态进行运算。最后一步计算完成后,将隐藏层向量 hk作为输出与本组序列对应的预测值对比,得出损失函数值,依据梯度下降算法,优化权重和偏置参数,以此训练出迭代次数范围内最精确的网络参数。原创 2024-11-21 23:24:17 · 1626 阅读 · 0 评论 -
利用Matlab函数实现深度学习算法
深度学习是一种机器学习技术,其核心是构建多层神经网络,通过深入的学习来实现对数据的有效建模和分析。在深度学习的发展过程中,产生了许多算法和框架,Matlab是其中之一,提供了大量的深度学习函数,可以帮助开发人员创建和训练神经网络模型。本文将从以下几个方面介绍如何利用Matlab函数实现深度学习算法:Matlab深度学习工具箱、Matlab神经网络工具箱、Matlab卷积神经网络工具箱。原创 2024-11-19 22:06:50 · 1471 阅读 · 0 评论 -
Matlab单输入多输出之同时识别手写数字类别和倾斜角度
网络架构:typefiter numfiter sizeactivation备注1165x5ReLU用于捕捉图像的基本特征,如边缘和纹理。原创 2024-11-18 22:29:58 · 1709 阅读 · 0 评论 -
Matlab多输入单输出之倾斜手写数字识别
本本主要介绍使用matlab构建多输入单输出的网络架构,来实现倾斜的手写数字识别,使用concatenationLayer来拼接特征,实现网络输入多个特征。原创 2024-11-17 18:17:27 · 1001 阅读 · 0 评论 -
Matlab使用深度网络设计器为迁移学习准备网络
迁移学习通过对预训练网络进行微调,使深度学习模型能在少量数据下快速适应新任务,类似于“举一反三”,而不需要从头训练。本文使用matlab自带的深度网络设计器,可以便捷地修改预训练网络进行迁移学习,通过对预训练网络的最后一层进行解锁,调高学习率,使新层中的学习速度快于迁移层的学习速度,即可输入新数据,完成迁移学习的训练。在实际工程应用中,构建并训练一个大规模的卷积神经网络是比较复杂的,需要大量的数据以及高性能的硬件。原创 2024-11-17 17:57:16 · 1445 阅读 · 0 评论 -
基于卷积神经网络的航空发动机剩余寿命预测Matlab实现
本文利用NASA提供的涡扇发动机退化数据集,进行数据预处理,构建训练样本和测试样本,然后搭建卷积神经网络(Convolutional Neural Network,CNN),学习训练数据,最后利用测试数据,分析神经网络模型预测剩余使用寿命(Remaining useful life,RUL)的效果。原创 2024-11-14 23:09:01 · 1906 阅读 · 1 评论 -
使用MATLAB实现信号处理的深度学习
我们可以将深度学习应用于与信号相关的问题,同时通过有效的信号处理,帮助深度模型更好地学习信号的内在模式,提高结果准确率。为了优化网络性能,测试不同的参数值组合,例如,每一层的节点数目、卷积层中使用的滤波器大小、最大池化层中使用的池大小等,取值各不相同。实际上,为了从数据集提取尽可能多的有用信息,我们必须处理所有分辨率级别的图像,哪怕图像中的目标只有几个像素宽。通常,科研工作者会更关注中间的两部分,而对于工程问题,不仅要考虑算法开发,同时要关注如何获取到真实有效的数据,以及最终将模型部署于商业商品中。原创 2024-11-10 02:12:32 · 1600 阅读 · 0 评论