在ubuntu系统同时使用ros2和conda环境

        相信大家刚开始在使用ubuntu系统,都会出现环境冲突的情况,例如我们在刚开始启动终端时,如果安装了conda,就会默认进入base环境,这会导致我们后续安装ros2依赖库的时候一直报错,无法安装。

        在后续使用pycharm时,因为害怕出现上述情况,打算直接在pycharm使用ros2的环境,但是接下来就会出现版本不兼容问题,例如numpy和cv2,如果我们擅自去升级人ros2里面依赖库的版本的话,这可能会导致后续在使用ros2时出现报错,有点得不偿失,所以我们还是需要使用到conda环境,接下来我将详细说明如何让这两种环境不冲突。

一、下载安装conda

安装包路径:ZTL_Base_AI_SDK_20240907_1446/rknn_model_base_env/Anaconda3-2024.06-1-Linux -x86_64.sh

1.cd到Anaconda3的安装路径下

2.+x 可执行权限,指令为:chmod +x Anaconda3-2024.06-1-Linux-x86_64.sh

3.执行权限后,开始运行安装,指令为:./Anaconda3-2024.06-1-Linux-x86_64.sh

4.对Anaconda进行初始化。编辑.bashrc文件,指令为:nano ~/.bashrc,进入文件,在最下方写入:. /home/zc/anaconda3/etc/profile.d/conda.sh   conda activate base。保存并退出(Ctrl+O,然后按Enter保存;Ctrl+X退出)

5.应用对该文件的修改,指令为:source ~/.bashrc

二、退出base环境

        由于下载了conda以后,系统就会默认进入base环境,这其实就是默认进入了conda,类似于下图

        那么我们需要先退出这个环境。执行下列指令(这个指令只在当前终端有效,如果打开新的终端还是会默认进入base环境)

conda deactivate

        

        下列指令为永久生效的指令,这样的话下次就不会进入base环境

conda config --set auto_activate_base false

        我们可以通过python的位置,来检查指令是否生效

        从图中可以看出,在进入base环境后,会指向conda里面的python。如果退出base环境就会指向系统的python。这就说明我们设置成功了。

三、修改.bashrc文件

        可以选择在文档编辑器打开bashrc文件,这样方便查找和修改

gedit ~/.bashrc &

        在文档的后面加上下列指令

#export PATH="$HOME/anaconda3/bin:$PATH"
# >>> Conda 初始化(不自动激活 base)
if [ -f "$HOME/anaconda3/etc/profile.d/conda.sh" ]; then
    source "$HOME/anaconda3/etc/profile.d/conda.sh"
fi

# >>> Conda 手动激活(使用别名)
alias use_conda="conda activate && echo '[Conda] 当前 Python 路径:' \$(which python)"

# >>> ROS Noetic 环境初始化(使用系统 Python)
alias use_ros="source /opt/ros/noetic/setup.bash && echo '[ROS] 已激活:使用系统 Python:' \$(which python3)"

# === 取消自动激活 Conda base(确保配置生效)
conda config --set auto_activate_base false

        如果文件中出现第一行的指令尽量将其注释掉,这可能会导致与ros2环境冲突。最后一行是前面我们讲过的取消自动进入base环境。

        修改好了以后,点击保存,然后进入终端执行

source ~/.bashrc

        这样我们就可以同时全部修改完成了。

        输入下列指令即可进入base环境,在后面加入创建环境的名称即可进入对应环境

conda activate

        输入下列指令即可退出

conda deactivate

<think>我们正在讨论在conda虚拟环境中配置运行ROS2。根据提供的引用,虽然引用的是ROS1(如noetic、melodic),但原理相似,我们可以借鉴。关键点:1.激活conda虚拟环境后,需要sourceROS2安装脚本(如setup.bash)以设置环境变量。2.为了避免每次进入conda环境都要手动source,可以将source命令添加到conda环境的激活脚本中。步骤:1.创建并激活conda虚拟环境(假设环境名为ros2_env):```bashcondacreate-nros2_envpython=3.8condaactivateros2_env```2.在虚拟环境安装ROS2。注意:ROS2通常不建议安装conda环境中,因为可能存在依赖冲突。但我们可以尝试在conda环境使用系统安装ROS2(即ROS2安装系统目录,如/opt/ros/foxy)。3.为了在激活conda环境时自动sourceROS2环境,我们可以创建conda的激活脚本:```bashmkdir-p$CONDA_PREFIX/etc/conda/activate.decho"source/opt/ros/foxy/setup.bash">$CONDA_PREFIX/etc/conda/activate.d/ros2.sh```注意:请将路径`/opt/ros/foxy`替换为你的ROS2安装路径(如humble、galactic等)。4.同样,我们可以创建停用时的脚本(可选,如果需要清除环境变量):```bashmkdir-p$CONDA_PREFIX/etc/conda/deactivate.decho'unsetROS_DISTRO'>$CONDA_PREFIX/etc/conda/deactivate.d/ros2.sh#可以添加更多需要unset的变量```但通常,conda在停用环境时会自动恢复环境变量,所以可能不需要。5.测试:退出conda环境再重新激活,然后运行ROS2命令(如`ros2topiclist`)看是否正常。注意:在conda环境使用ROS2时,可能会遇到Python依赖冲突(因为ROS2有自己的Python包)。因此,建议在conda环境安装ROS2的Python包时,使用pip安装(如果ROS2提供Python包)或者使用conda-forge中的ROS2包(如果有)。但通常,我们更倾向于使用系统安装ROS2,然后在conda环境中通过source其setup脚本来使用。另一种方法:使用conda-forge安装ROS2conda-forge提供了一些ROS2的包,但可能不是最新版本。可以尝试:```bashcondainstall-cconda-forgeros-humble-desktop#以humble为例```但请注意,这种方式可能会安装大量的包,并且可能与系统已有的ROS2冲突。根据引用[3][4],在conda环境中运行ROS1时,需要同时处理ROS深度学习框架(如TensorFlow)的依赖,同理在ROS2中也需要处理类似问题。因此,建议先创建一个干净的conda环境,然后按照上述方法集成系统安装ROS2。如果遇到问题,可以尝试在conda环境中通过源码编译ROS2,但这个过程较为复杂。总结:推荐使用系统安装ROS2,然后在conda环境中通过激活脚本自动sourceROS2环境。相关问题:1.在conda环境使用ROS2时,如何处理Python依赖冲突?2.如何验证conda虚拟环境中的ROS2是否配置成功?3.在conda环境中编译ROS2包需要注意什么?</think>### 在 Conda 虚拟环境中配置运行 ROS 2 的完整指南 #### 核心原理 ROS 2 依赖特定的环境变量(如`ROS_DISTRO`, `AMENT_PREFIX_PATH`等)。Conda 虚拟环境默认不包含这些变量,需通过脚本注入[^1][^2]。核心操作是通过 **Conda 的激活/停用钩子**自动加载 ROS 2 环境。 --- ### 配置步骤(以 Ubuntu 22.04 + ROS 2 Humble 为例) #### 1. 创建 Conda 虚拟环境 ```bash conda create -n ros2_env python=3.10 conda activate ros2_env ``` #### 2. 配置环境自动加载 ```bash # 创建激活钩子脚本 mkdir -p $CONDA_PREFIX/etc/conda/activate.d echo 'source /opt/ros/humble/setup.bash' > $CONDA_PREFIX/etc/conda/activate.d/ros2_humble.sh # 创建停用钩子脚本(清理变量) mkdir -p $CONDA_PREFIX/etc/conda/deactivate.d echo 'unset ROS_DISTRO ROS_PYTHON_VERSION AMENT_PREFIX_PATH' > $CONDA_PREFIX/etc/conda/deactivate.d/ros2_clean.sh chmod +x $CONDA_PREFIX/etc/conda/*.sh ``` > **关键说明**: > - `setup.bash` 路径需匹配你的 ROS 2 版本(如 Galactic 为`/opt/ros/galactic/setup.bash`) > - 钩子脚本会在激活环境时自动加载 ROS 2 变量[^2] #### 3. 验证配置 ```bash conda deactivate && conda activate ros2_env # 重启环境 echo $ROS_DISTRO # 应输出 "humble" ros2 topic list # 测试 ROS 2 命令 ``` #### 4. 安装 Python 依赖 ```bash pip install lxml numpy opencv-python # ROS 2 常用库 ``` --- ### ⚠️ 常见问题解决 1. **`ros2`命令未找到** → 检查钩子脚本路径是否正确,确认`/opt/ros/[version]/setup.bash`存在 2. **Python 包冲突** → 在纯净环境安装 ROS 2 依赖: ```bash pip install --no-deps rosidl-generator-py rclpy ``` 3. **编译 ROS 2 包** 需额外加载工作空间: ```bash echo "source ~/ros2_ws/install/local_setup.sh" >> $CONDA_PREFIX/etc/conda/activate.d/ros2_humble.sh ``` --- ### 进阶配置(可选) - **混合深度学习环境**(如 PyTorch) 先安装 PyTorch 再配置 ROS 2 钩子,避免库覆盖[^4]: ```bash conda install pytorch torchvision -c pytorch # 然后再配置 ROS 2 钩子 ``` - **多版本 ROS 2 切换** 创建多个 Conda 环境(如`ros2_galactic`, `ros2_humble`),每个环境配置对应的钩子脚本。 --- ### 典型应用场景 1. 在隔离环境中开发 ROS 2 + PyTorch/TensorFlow 的感知算法[^4] 2. 同时维护多个 ROS 2 版本的项目 3. 避免系统级 Python 与 ROS 2 Python 包的冲突 > **配置成功标志**:在 Conda 环境中可正常运行 `ros2 run <package> <node>` 且 `import rclpy` 无报错。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值