leetcode(双向指针)(前后缀分解) 11.盛最多水的容器 42.接雨水

前言

今天看了灵茶修艾府算法精讲第二讲,好牛

11.盛最多水的容器

来源于leetcode
看图,可以看出来,如果左边比右边柱子高,则高度是由右边柱子决定,接下来就需要循环,为了寻找最高,我们要让右边往前移动,而不是让左边往右移动,因为左边柱子已经相比最高,在间距变短条件下,如果右边柱子高度增加,可能面积会比之前大,代码如下:

class Solution {
public:
    int maxArea(vector<int>& height) {
    	int n = height.size();
        int ans = 0, left = 0, right = n - 1;
        while (left < right) {
        	int area = (right - left) * max(height[left], height[right]);
        	ans = max(ans, area);
        	if (height[left] > height[right]) {
				right --;
			} else {
				left ++;
			}
        }
        return ans;
    }
};

42.接雨水

方法一:前后缀分解法

来源于leetcode
一列分为左边和右边,都是这一列的索引是一样,我们要把左边称为前缀,右边称为后缀。
这道题,每个有水的地方,都是这个区域的 min(前缀 - 后缀) - 柱子高
前缀求法: 从左到右循环,如果改区域前缀比前一个区域前缀高,则该区域前缀是本身;如果矮,则是之前高的前缀。这样就可以防止漏出去
后缀求法: 同理
在这里插入图片描述

class Solution {
public:
    int trap(vector<int>& height) {
		int n = height.size(), ans = 0;
		
		vector<int> pre_max(n);
		pre_max[0] = height[0];
		for (int i = 1; i < n; i++) {
			pre_max[i] = max(pre_max[i - 1], height[i]);
		}
		
		vector<int> suf_max(n);
		suf_max[n - 1] = height[n - 1];
		for (int i = n - 2; i >= 0; i--) {
			suf_max[i] = max(suf_max[i + 1], height[i]);
		}
		for (int i = 0; i < n; i++){
			ans += min(pre_max[i], suf_max[i]) - height[i];
		}
		return ans;
    }
};

上述方法时间复杂度为O(n),空间复杂度为O(n)。

方法二:双向指针法

从头的前缀和尾的后缀开始比较,如果前缀矮,则水就是前缀减去头的柱子高度,然后头向后移动。

class Solution {
public:
    int trap(vector<int>& height) {
        int n = height.size(), ans = 0;
        int left = 0, right = n - 1;
        int pre_max = 0, suf_max = 0;
        
        while (left <= right) {
            pre_max = max(pre_max, height[left]);
            suf_max = max(suf_max, height[right]);
            if (pre_max < suf_max) {
                ans += pre_max - height[left];
                left ++;
            } else {
                ans += suf_max - height[right];
                right --;
            }
        }
        return ans;


    }
};

这个需要多理解,时间复杂度为O(n),空间复杂度为O(1)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值