嵌入式第二十三课 !!!树结构与排序(时间复杂度)

二叉树

概念  

树是 n(n >= 0) 个结点的有限集合。若 n=0 ,为空树。

  在任意一个非空树中:           

        (1)有且仅有一个特定的根结点;

        (2)当 n>1 时,其余结点可分为 m 个互不相交的有限集合T1、T2......Tm,其中每一个集合又是一个树,并且称为子树。

度、度数、深度

结点拥有子树的个数称为结点的度。度为 0 的结点称为叶结点;度不为 0 称为分支结点。

树的度数:指在这颗树中,最大的结点的度数,称为树的度数。

树的深度(高度):指从根开始,根为第一层,根的孩子为第二层,即树的层数,称为树的深度。

树的存储:顺序结构、链表结构。

二叉树(binary tree)

概念

二叉树是 n 个结点的有限集合,集合要么为空树,要么由一个根节点和两棵互不相交的树组成,这两棵树分别称为根节点的左子树和右子树。

特点

(1)每个结点最多两个子树。

(2)左子树和右子树是有顺序的,次序不能颠倒。

(3)如果某个结点只有一个子树,也要区分左、右子树。

特殊的二叉树

(1)斜树

斜树分为两种,一种是所有的结点都只有左子树,称为左斜树;另一种是所有的结点都只有右子树,称为右斜树。

(2)满二叉树

满二叉树是指所有的分支结点都存在左右子树,并且叶子都在同一层上。

(3)完全二叉树

完全二叉树是指:对于一颗具有 n 个结点的二叉树按照层序编号,如果编号 i( 1<= i <= n )的结点于同样深度的满二叉树中编号为 i 的结点在二叉树中的位置完全相同,则此树称为完全二叉树。

特性

(1)在二叉树的第 i 层上最多有 2^(i-1) 个结点,i >= 1。

(2)深度为 k 的二叉树至多有 2^k-1 个结点,k >= 1。

(3)任意一个二叉树T,如果其叶子结点的个数为 N,度数为 M,则 N=M+1。

(4)有 n 个结点的完全二叉树深度为(logn / log2)+ 1。

层序

前序:根左右。先访问根结点,再访问左结点,最后访问右结点。

中序:左根右。先从根结点开始(不是先访问根结点),从左结点开始访问,再访问根结点,最后访问右结点。

后序:左右根。先从根结点开始(不是先访问根结点),从左结点开始访问,再访问右结点,最后访问根结点。

二叉树结构的程序编写

1.创建二叉树

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

typedef char DATATYPE;
typedef struct BiTNode /* 结点结构 */
{
  DATATYPE data;                   /* 结点数据 */
  struct BiTNode *lchild, *rchild; /* 左右孩子指针 */
} BiTNode;

char data[] = "Abd#g###ce#h##fi###";
int ind = 0;
void CreateTree(BiTNode **root)
{
  char c = data[ind++];
  if ('#' == c)
  {
    *root = NULL;
    return;
  }
  else
  {
    *root = malloc(sizeof(BiTNode));
    if (NULL == *root)
    {
      printf("malloc error\n");
      *root = NULL;
      return;
    }
    (*root)->data = c;
    CreateTree(&(*root)->lchild);
    CreateTree(&(*root)->rchild);
  }
  return;
}

2.三种不同的遍历方式

根左右

void PreOrderTraverse(BiTNode *root)
{
  if (NULL == root)
  {
    return;
  }
  else
  {
    printf("%c", root->data);
    PreOrderTraverse(root->lchild);
    PreOrderTraverse(root->rchild);
  }
  return;
}

左根右

void InOrderTraverse(BiTNode *root)
{
  if (NULL == root)
  {
    return;
  }
  InOrderTraverse(root->lchild);
  printf("%c", root->data);
  InOrderTraverse(root->rchild);
  return;
}

左右根

void PostOrderTraverse(BiTNode *root)
{
  if (NULL == root)
  {
    return;
  }
  PostOrderTraverse(root->lchild);
  PostOrderTraverse(root->rchild);
  printf("%c", root->data);
  return;
}

销毁树结构

void DestroyTree(BiTNode *root)
{
  if (NULL == root)
  {
    return;
  }
  DestroyTree(root->lchild);
  DestroyTree(root->rchild);
  free(root);
  root = NULL;
  return;
}

各种排序的时间复杂度
                   

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值