
线代
文章平均质量分 66
培风图南以星河揽胜
穷源溯流,昂霄耸壑;
至道嘉猷,静水流深。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
线性代数期末考试必考计算题复习全攻略
题型关键点工具行列式化简、展开行列式性质逆矩阵是否可逆、伴随或初等变换det ≠ 0方程组自由变量、通解结构行变换线性无关组极大无关组、秩行变换基变换过渡矩阵PA−1BPA−1B正交性内积为零向量运算特征值特征方程detA−λIdetA−λI。原创 2025-06-14 16:14:17 · 651 阅读 · 0 评论 -
(简单版)线性代数期末考试计算题解析:向量的内积、长度及正交性判断
在期末考试中,线性代数的一个重要考点是关于向量的内积、向量的长度(模)以及向量之间的正交性判断。这类问题通常以大题形式出现,要求考生掌握基本公式和计算方法,并能灵活运用。已知三个向量:请完成以下任务:求出各组向量的内积:求出每个向量的长度(模):判断这三个向量是否两两正交?向量的内积定义为:(α,β)=αTβ=x1y1+x2y2+⋯+xnyn(\alpha, \beta) = \alpha^T\beta = x_1y_1 + x_2y_2 + \cdots + x_ny_n(α,β)=αTβ=x1y1原创 2025-06-13 08:55:35 · 672 阅读 · 0 评论 -
线性代数期末知识点复习(向量的内积、长度与正交性)
在欧式空间(常用。原创 2025-06-13 08:49:21 · 815 阅读 · 0 评论 -
线性代数期末考试必考大题——向量极大无关组与秩
将所有向量作为列向量排列,构成一个矩阵。无论原始向量是行向量还是列向量,都要统一为列向量进行处理。✅ 提示:若题目中给出的是行向量,记得转置后再按列排列。“列成矩阵行变换,主元列找原向量;其余向量靠它表,秩就是主元个数。错误类型正确做法向量按行排列应统一为列向量忘记归一化主元主元必须为1直接看原始矩阵判断主元主元来自行简化后的矩阵误以为极大无关组唯一数量一致即可,选择可以不同。原创 2025-06-12 19:15:33 · 832 阅读 · 0 评论 -
线性代数期末考试选填知识点分布(含核心考点)
线性代数作为大学理工科的重要基础课程,在期末考试中常常以选择题和填空题的形式考查基础知识的理解与掌握。本文整理了线性代数期末考试中选择题与填空题常见知识点分布,帮助同学们高效复习、查漏补缺。设AAA和BBB是两个同型(即行数和列数都相同的)矩阵。如果可以通过有限次初等变换将矩阵AAA变为矩阵BBB,则称矩阵AAA与BBB等价A∼BA \sim BA∼B这里的初等变换交换两行(列)某一行(列)乘以一个非零常数某一行(列)加上另一行(列)的 k 倍。原创 2025-06-12 12:00:19 · 538 阅读 · 0 评论 -
线性代数期末复习:基变换与坐标变换详解
在线性空间中,向量的表示依赖于所选的基(basis)。当我们更换不同的基时,同一个向量的坐标也会随之改变。因此,掌握基变换公式和坐标变换公式是理解线性代数中向量空间本质的重要一步。本篇文章将从两个核心公式入手,系统地讲解基变换和坐标变换的基本原理,并通过一个具体例子加深理解。设VVV是一个nnn维线性空间,ϵ1ϵ2ϵnϵ1ϵ2ϵn和ϵ1′ϵ2′ϵn′ϵ1′ϵ2′ϵn′是该空间中的两组基。原创 2025-06-12 10:27:05 · 1117 阅读 · 0 评论 -
线性代数基础:可逆矩阵、分块矩阵与矩阵的秩
矩阵的分块分块矩阵的定义分块矩阵的结构示例分块矩阵的运算分块矩阵的加法分块矩阵的数乘分块矩阵的乘法分块矩阵的转置特殊的分块矩阵分块矩阵的行列式与逆矩阵。原创 2025-05-14 08:00:36 · 319 阅读 · 0 评论 -
矩阵的初等变换及其应用
矩阵的初等变换是矩阵理论中的一个重要工具,它可以帮助我们解决许多实际问题,如求解线性方程组、计算矩阵的逆等。通过初等变换,我们可以将矩阵化简为行阶梯形矩阵或行最简形矩阵,从而更容易地进行分析和计算。希望本文对您有所帮助!原创 2025-05-14 08:00:15 · 457 阅读 · 0 评论 -
矩阵的运算与方阵的行列式
行列式具有以下性质:行列式与其转置行列式相等,即互换行列式的两行(列),行列式变号。行列式某一行(列)所有元素的公因子可以提到行列式符号的外面。行列式中如果有两行(列)元素成比例,则此行列式等于零。若行列式的某一行(列)的元素都是两个数之和,则此行列式等于两个行列式的和。把行列式的某一行(列)的各元素乘以同一个数然后加到另一行(列)对应的元素上去,行列式不变。矩阵的运算和方阵的行列式是线性代数中的重要内容,掌握这些知识对于解决实际问题具有重要意义。原创 2025-05-13 21:56:15 · 318 阅读 · 0 评论 -
第一章练习题:线性代数基础
线性代数是数学中的一个重要分支,广泛应用于计算机科学、物理学、经济学等领域。本章练习题涵盖了行列式、矩阵运算、矩阵秩等基本概念和计算方法。通过这些练习题,可以帮助读者巩固线性代数的基础知识。原创 2025-05-13 21:44:05 · 196 阅读 · 0 评论 -
线性代数:线性方程组的理论与求解方法
解法 1(克拉默法则)解法 2(矩阵的初等变换)线性方程组是线性代数中的重要研究对象,其求解方法包括克拉默法则和高斯消元法。线性方程组的解可以分为唯一解、无穷多解和无解三种情况。通过矩阵的秩和增广矩阵的秩,可以判断线性方程组是否有解。齐次线性方程组的解与系数矩阵的秩密切相关。希望本文能帮助你更好地理解线性方程组的理论与求解方法。如果你有任何问题或需要进一步的解释,欢迎随时留言讨论!原创 2025-05-13 21:37:28 · 775 阅读 · 0 评论 -
线性代数:n维向量及其线性运算
在实际问题中,我们常常需要通过一组有序数组来描述对象的状态。例如,确定小鸟的飞行状态需要以下参数:小鸟身体的质量 m小鸟身体的仰角鸟翼的转角鸟翼的振动频率小鸟身体的水平转角小鸟重心在空间的位置参数这些参数可以组成一个有序数组,这就是一个n维向量的实例。在解析几何中,二元有序数组 (x,y) 可以表示平面上的一个点,也可以表示从原点到点 (x,y) 的一个平面向量。类似地,三元有序数组 (x,y,z) 可以表示空间中的一个点,也可以表示从原点到点 (x,y,z) 的一个空间向量。原创 2025-05-13 21:31:24 · 290 阅读 · 0 评论 -
线性代数——向量间的线性关系
原创 2025-05-13 21:22:04 · 146 阅读 · 0 评论 -
线性方程组解的结构
通过初等行变换,可以得到其行最简形矩阵,并进一步求解基础解系和通解。通过初等行变换,可以得到行最简形矩阵,并进一步求解基础解系和通解。通过初等行变换,可以得到行最简形矩阵,并进一步求解通解。原创 2025-05-13 21:11:16 · 302 阅读 · 0 评论 -
线性代数中的向量组秩与矩阵秩的关系
向量组的等价性定义和性质。判别向量组是否等价的方法。极大线性无关组和向量组的秩定义和性质。求极大线性无关组和秩的方法。向量组的秩与矩阵的秩的关系矩阵的行秩和列秩相等。矩阵的秩与其构成的向量组的秩相等。相关定理和证明。希望这篇文章能帮助你更好地理解向量组的秩与矩阵的秩的概念及其应用。如果你有任何问题,欢迎在评论区留言讨论!原创 2025-05-13 20:24:17 · 1083 阅读 · 0 评论 -
线性代数中的向量内积、正交向量组与正交矩阵
向量内积内积的定义和性质。向量的长度(模)及其性质。两向量的夹角余弦。正交向量组定义和性质。施密特正交化方法。正交矩阵定义和性质。标准正交基的构造。正交变换的特性。希望这篇文章能帮助你更好地理解向量内积、正交向量组和正交矩阵的概念及其应用。如果你有任何问题,欢迎在评论区留言讨论!原创 2025-05-13 20:06:11 · 455 阅读 · 0 评论 -
线性代数中的向量空间与基变换
向量空间:满足特定规律的向量集合。基与维数:线性无关的向量组,维数为基中向量的个数。基变换与坐标变换:通过过渡矩阵实现不同基之间的转换。希望这篇文章能帮助你更好地理解向量空间及其相关概念。如果你有任何问题,欢迎在评论区留言讨论!原创 2025-05-13 19:45:10 · 301 阅读 · 0 评论