【动态规划】(斐波那契数列模型)使⽤最⼩花费爬楼梯(easy)

使⽤最⼩花费爬楼梯(easy)

题⽬链接:746. 使⽤最⼩花费爬楼梯

题⽬描述

给你⼀个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要⽀付的费⽤。⼀旦你⽀付此费⽤,即可选择向上爬⼀个或者两个台阶。
你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。
请你计算并返回达到楼梯顶部的最低花费
例 1:
输⼊:cost = [10,15,20]
输出:15
解释:
你将从下标为 1 的台阶开始。
⽀付 15 ,向上爬两个台阶,到达楼梯顶部。
总花费为 15 。
⽰例 2:
输⼊:cost = [1,100,1,1,1,100,1,1,100,1]
输出:6
解释:
你将从下标为 0 的台阶开始。
◦ ⽀付 1 ,向上爬两个台阶,到达下标为 2 的台阶。
◦ ⽀付 1 ,向上爬两个台阶,到达下标为 4 的台阶。
◦ ⽀付 1 ,向上爬两个台阶,到达下标为 6 的台阶。
◦ ⽀付 1 ,向上爬⼀个台阶,到达下标为 7 的台阶。
◦ ⽀付 1 ,向上爬两个台阶,到达下标为 9 的台阶。
◦ ⽀付 1 ,向上爬⼀个台阶,到达楼梯顶部。
总花费为 6 。

注意注意:
在这道题中,数组内的每⼀个下标 [0, n - 1] 表⽰的都是楼层,⽽顶楼的位置其实是在 n 的
位置!!!

解法(动态规划)

算法思路:

解法⼀:

在这里插入图片描述

  1. 状态表⽰:
    这道题可以根据「经验 + 题⽬要求」直接定义出状态表⽰:
    第⼀种:以 i 位置为结尾,巴拉巴拉
    dp[i] 表⽰:到达 i 位置时的最⼩花费。(注意:到达 i 位置的时候, i 位置的钱不需要算上)
  2. 状态转移⽅程:
    根据最近的⼀步,分情况讨论:
    ▪ 先到达 i - 1 的位置,然后⽀付 cost[i - 1] ,接下来⾛⼀步⾛到 i 位置:dp[i - 1] + cost[i - 1] ;
    ▪ 先到达 i - 2 的位置,然后⽀付 cost[i - 2] ,接下来⾛⼀步⾛到 i 位置:dp[i - 2] + cost[i - 2] 。
  3. 初始化:
    从我们的递推公式可以看出,我们需要先初始化 i = 0 ,以及 i = 1 位置的值。容易得到dp[0] = dp[1] = 0 ,因为不需要任何花费,就可以直接站在第 0 层和第 1 层上。
  4. 填表顺序:
    根据「状态转移⽅程」可得,遍历的顺序是「从左往右」。
  5. 返回值:
    根据「状态表⽰以及题⽬要求」,需要返回 dp[n] 位置的值。

算法代码

class Solution{
 public int minCostClimbingStairs(int[] cost) {
	 // 1. 创建 dp 表
	 // 2. 初始化
	 // 3. 填表
	 // 4. 返回值
	 int n = cost.length;
	 int[] dp = new int[n + 1];
	 for(int i = 2; i <= n; i++)
	 dp[i] = Math.min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
	 return dp[n];
 }
}

法⼆:

在这里插入图片描述

  1. 状态表⽰:
    这道题可以根据「经验 + 题⽬要求」直接定义出状态表⽰:
    第⼆种:以 i 位置为起点,巴拉巴拉。
    dp[i] 表⽰:从 i 位置出发,到达楼顶,此时的最⼩花费。
  2. 状态转移⽅程:
    根据最近的⼀步,分情况讨论:
    ▪ ⽀付 cost[i] ,往后⾛⼀步,接下来从 i + 1 的位置出发到终点: dp[i + 1] + cost[i] ;
    ▪ ⽀付 cost[i] ,往后⾛两步,接下来从 i + 2 的位置出发到终点: dp[i + 2] + cost[i] ;
    我们要的是最⼩花费,因此 dp[i] = min(dp[i + 1], dp[i + 2]) + cost[i] 。
  3. 初始化:
    为了保证填表的时候不越界,我们需要初始化最后两个位置的值,结合状态表⽰易得: dp[n -
    1] = cost[n - 1], dp[n - 2] = cost[n - 2]
  4. 填表顺序:
    根据「状态转移⽅程」可得,遍历的顺序是「从右往左」。
  5. 返回值:
    根据「状态表⽰以及题⽬要求」,需要返回 dp[n] 位置的值。

算法代码

class Solution{
 public int minCostClimbingStairs(int[] cost) {
	 // 1. 创建 dp 表
	 // 2. 初始化
	 // 3. 填表
	 // 4. 返回值
	 int n = cost.length;
	 int[] dp = new int[n];
	 dp[n - 1] = cost[n - 1]; dp[n - 2] = cost[n - 2];
	 for(int i = n - 3; i >= 0; i--)
	 	dp[i] = Math.min(dp[i + 1], dp[i + 2]) + cost[i];
	 return Math.min(dp[0], dp[1]);
 }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值