题⽬描述
给你⼀个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要⽀付的费⽤。⼀旦你⽀付此费⽤,即可选择向上爬⼀个或者两个台阶。
你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。
请你计算并返回达到楼梯顶部的最低花费
例 1:
输⼊:cost = [10,15,20]
输出:15
解释:
你将从下标为 1 的台阶开始。
⽀付 15 ,向上爬两个台阶,到达楼梯顶部。
总花费为 15 。
⽰例 2:
输⼊:cost = [1,100,1,1,1,100,1,1,100,1]
输出:6
解释:
你将从下标为 0 的台阶开始。
◦ ⽀付 1 ,向上爬两个台阶,到达下标为 2 的台阶。
◦ ⽀付 1 ,向上爬两个台阶,到达下标为 4 的台阶。
◦ ⽀付 1 ,向上爬两个台阶,到达下标为 6 的台阶。
◦ ⽀付 1 ,向上爬⼀个台阶,到达下标为 7 的台阶。
◦ ⽀付 1 ,向上爬两个台阶,到达下标为 9 的台阶。
◦ ⽀付 1 ,向上爬⼀个台阶,到达楼梯顶部。
总花费为 6 。
注意注意:
在这道题中,数组内的每⼀个下标 [0, n - 1] 表⽰的都是楼层,⽽顶楼的位置其实是在 n 的
位置!!!
解法(动态规划)
算法思路:
解法⼀:
- 状态表⽰:
这道题可以根据「经验 + 题⽬要求」直接定义出状态表⽰:
第⼀种:以 i 位置为结尾,巴拉巴拉
dp[i] 表⽰:到达 i 位置时的最⼩花费。(注意:到达 i 位置的时候, i 位置的钱不需要算上) - 状态转移⽅程:
根据最近的⼀步,分情况讨论:
▪ 先到达 i - 1 的位置,然后⽀付 cost[i - 1] ,接下来⾛⼀步⾛到 i 位置:dp[i - 1] + cost[i - 1] ;
▪ 先到达 i - 2 的位置,然后⽀付 cost[i - 2] ,接下来⾛⼀步⾛到 i 位置:dp[i - 2] + cost[i - 2] 。 - 初始化:
从我们的递推公式可以看出,我们需要先初始化 i = 0 ,以及 i = 1 位置的值。容易得到dp[0] = dp[1] = 0 ,因为不需要任何花费,就可以直接站在第 0 层和第 1 层上。 - 填表顺序:
根据「状态转移⽅程」可得,遍历的顺序是「从左往右」。 - 返回值:
根据「状态表⽰以及题⽬要求」,需要返回 dp[n] 位置的值。
算法代码:
class Solution{
public int minCostClimbingStairs(int[] cost) {
// 1. 创建 dp 表
// 2. 初始化
// 3. 填表
// 4. 返回值
int n = cost.length;
int[] dp = new int[n + 1];
for(int i = 2; i <= n; i++)
dp[i] = Math.min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
return dp[n];
}
}
法⼆:
- 状态表⽰:
这道题可以根据「经验 + 题⽬要求」直接定义出状态表⽰:
第⼆种:以 i 位置为起点,巴拉巴拉。
dp[i] 表⽰:从 i 位置出发,到达楼顶,此时的最⼩花费。 - 状态转移⽅程:
根据最近的⼀步,分情况讨论:
▪ ⽀付 cost[i] ,往后⾛⼀步,接下来从 i + 1 的位置出发到终点: dp[i + 1] + cost[i] ;
▪ ⽀付 cost[i] ,往后⾛两步,接下来从 i + 2 的位置出发到终点: dp[i + 2] + cost[i] ;
我们要的是最⼩花费,因此 dp[i] = min(dp[i + 1], dp[i + 2]) + cost[i] 。 - 初始化:
为了保证填表的时候不越界,我们需要初始化最后两个位置的值,结合状态表⽰易得: dp[n -
1] = cost[n - 1], dp[n - 2] = cost[n - 2] - 填表顺序:
根据「状态转移⽅程」可得,遍历的顺序是「从右往左」。 - 返回值:
根据「状态表⽰以及题⽬要求」,需要返回 dp[n] 位置的值。
算法代码:
class Solution{
public int minCostClimbingStairs(int[] cost) {
// 1. 创建 dp 表
// 2. 初始化
// 3. 填表
// 4. 返回值
int n = cost.length;
int[] dp = new int[n];
dp[n - 1] = cost[n - 1]; dp[n - 2] = cost[n - 2];
for(int i = n - 3; i >= 0; i--)
dp[i] = Math.min(dp[i + 1], dp[i + 2]) + cost[i];
return Math.min(dp[0], dp[1]);
}
}