【算法】【区间合并】acwing算法基础 803. 区间合并

题目

给定 n 个区间 [li,ri],要求合并所有有交集的区间。

注意如果在端点处相交,也算有交集。

输出合并完成后的区间个数。

例如:[1,3] 和 [2,6] 可以合并为一个区间 [1,6]。

输入格式

第一行包含整数 n。

接下来 n 行,每行包含两个整数 l 和 r。

输出格式

共一行,包含一个整数,表示合并区间完成后的区间个数。

数据范围

1≤n≤100000

−109≤li≤ri≤109

输入样例:

5

1 2

2 4

5 6

7 8

7 9

输出样例:

3

来源:acwing算法基础 803. 区间合并


思路(注意事项)


纯代码

#include<bits/stdc++.h>
using namespace std;
vector<pair<int, int>> p;

int main()
{
	int  n;
	cin >> n;
	
	for (int i = 0; i < n; i ++)
	{
		int l, r;
		scanf("%d%d", &l, &r);
		p.push_back({l, r});
	}
	sort (p.begin(), p.end());
	
	int ed = p[0].second, sum = 1;
	for (int i = 1; i < n; i ++)
	{
		if (ed >= p[i].first) ed = max (ed, p[i].second);
		else {
			sum ++;
			ed = p[i].second;
		} 
	}

	cout << sum;
	
	return 0;
} 

题解(带注释)

#include<bits/stdc++.h>
using namespace std;

vector<pair<int, int>> p;  // 存储所有区间

int main()
{
    int n;
    cin >> n;  // 输入区间的数量

    // 输入每个区间
    for (int i = 0; i < n; i++)
    {
        int l, r;
        scanf("%d%d", &l, &r);  // 输入区间的左端点和右端点
        p.push_back({l, r});  // 将区间存入向量p
    }

    // 对所有区间按左端点进行升序排序
    sort(p.begin(), p.end());

    int ed = p[0].second;  // 初始化当前合并区间的右端点为第一个区间的右端点
    int sum = 1;  // 初始化合并后的区间数量为1

    // 遍历所有区间,合并重叠区间
    for (int i = 1; i < n; i++)
    {
        if (ed >= p[i].first)  // 如果当前区间与上一个合并区间有重叠
        {
            ed = max(ed, p[i].second);  // 更新合并区间的右端点
        }
        else  // 如果没有重叠
        {
            sum++;  // 新区间数量加1
            ed = p[i].second;  // 更新当前合并区间的右端点
        }
    }

    // 输出合并后的区间数量
    cout << sum;

    return 0;
}
### AcWing 算法基础课后的练习题目 为了巩固在AcWing算法基础课程中学到的知识,建议完成一系列有针对性的习题来提升技能。这些习题不仅能够帮助理解课堂上讲解的概念,还能提高解决实际问题的能力。 #### 推荐练习平台 推荐使用AcWing在线评测系统作为主要练习平台[^1]。该平台上提供了丰富的题目资源,并且支持多种编程语言提交代码,非常适合用来进行算法训练。 #### 基础数据结构与算法部分 针对排序算法的学习效果检验可以尝试实现快速排序(Quick Sort),这有助于加深对分治思想的理解和掌握。具体来说,在规定时间范围内编写并成功调试通过快排程序是一个很好的实践方式。 ```python def quick_sort(arr): if len(arr) <= 1: return arr else: pivot = arr[len(arr) // 2] left = [x for x in arr if x < pivot] middle = [x for x in arr if x == pivot] right = [x for x in arr if x > pivot] return quick_sort(left) + middle + quick_sort(right) ``` 对于图论中的最短路径求解方法,则可以从简单的Dijkstra算法入手。此算法适用于无负权边的情况下的单源最短路径计算问题。了解其基本原理之后,可以通过一些具体的实例来进行编码练习,从而更好地熟悉这一经典算法的应用场景[^2]。 ```cpp #include <iostream> #include <vector> #include <queue> using namespace std; const int N = 1e5 + 7; typedef pair<int, int> PII; int n, m, s; bool vis[N]; long long dis[N]; struct node { int to, cost; }; vector<node> G[N]; void dijkstra(int start){ fill(dis,dis+N,INT_MAX); priority_queue<PII,vector<PII>,greater<>> q; q.push(make_pair(start,0)); while(!q.empty()){ auto t=q.top(); q.pop(); int ver=t.first,dist=t.second; if(vis[ver]) continue; vis[ver]=true; for(auto i:G[ver]){ if(dist+i.cost<dis[i.to]){ dis[i.to]=dist+i.cost; q.push({i.to,dis[i.to]}); } } } } ``` 除了上述提到的基础知识点外,还应该注重其他方面能力的发展,比如控制流语句(顺序、选择、循环)、函数定义调用等基础知识也是不可或缺的一部分。因此,在日常刷题过程中应当注意全面覆盖各个领域内的核心概念和技术要点[^3]。 最后提醒一点关于区间操作类的问题也值得特别关注,例如区间合并就是一个典型例子。这类题目往往涉及到集合运算以及边界条件处理等内容,具有一定的挑战性和趣味性[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值