题目
- 将有序数组转换为二叉搜索树
给你一个整数数组 nums ,其中元素已经按 升序 排列,请你将其转换为一棵 平衡 二叉搜索树。
示例 1:
输入:nums = [-10,-3,0,5,9]
输出:[0,-3,9,-10,null,5]
解释:[0,-10,5,null,-3,null,9] 也将被视为正确答案:
示例 2:
输入:nums = [1,3]
输出:[3,1]
解释:[1,null,3] 和 [3,1] 都是高度平衡二叉搜索树。
思路(注意事项)
中间节点为根,向左向右递归建树。
纯代码
class Solution {
public:
TreeNode* func(vector<int>& nums, int left, int right)
{
if (left > right) return nullptr;
int mid = left + right >> 1;
TreeNode* root = new TreeNode(nums[mid]);
root -> left = func (nums, left, mid - 1);
root -> right = func (nums, mid + 1, right);
return root;
}
TreeNode* sortedArrayToBST(vector<int>& nums) {
return func (nums, 0, nums.size() - 1);
}
};
题解(加注释)
class Solution {
public:
// 递归函数:将有序数组的某一段转换为二叉搜索树
TreeNode* func(vector<int>& nums, int left, int right) {
// 如果左边界大于右边界,说明当前区间为空,返回空指针
if (left > right) return nullptr;
// 找到当前区间的中间位置
int mid = (left + right) >> 1; // 等价于 (left + right) / 2
// 以中间位置的元素作为根节点
TreeNode* root = new TreeNode(nums[mid]);
// 递归构建左子树:区间为 [left, mid - 1]
root->left = func(nums, left, mid - 1);
// 递归构建右子树:区间为 [mid + 1, right]
root->right = func(nums, mid + 1, right);
// 返回当前子树的根节点
return root;
}
// 主函数:将有序数组转换为二叉搜索树
TreeNode* sortedArrayToBST(vector<int>& nums) {
// 调用递归函数,初始区间为整个数组
return func(nums, 0, nums.size() - 1);
}
};