c++最长上升子序列长度

#include<bits/stdc++.h>

using namespace std;

#define maxn 1000

//最长上升子序列

//方法1:(时间复杂度 O(N^2))

//dp[i]:以位置i为结尾的最长递增子序列的长度

int dp[maxn];

int arr[maxn];

int ans=1;

void solve1(int n){

    for(int i=0;i<n;i++) dp[i]=1;

    for(int i=1;i<n;i++){

        for(int j=0;j<i;j++){

            if(arr[i]>arr[j]){

                dp[i]=max(dp[i],1+dp[j]);

                if(dp[i]>ans) ans=dp[i];

            }

        }

    }

    cout<<"ans = "<<ans<<endl;

}

//方法2:时间复杂度O(N*log N)

//end[i]:长度为i+1子序列的最小结尾

int endss[maxn];

int len=0;//len为end数组的实际大小,也是答案所在

//bs函数:用来搜索endss数组中比arr[i]小(不能相等)的第一个元素下标(从右往左算的话)

//举个例子:现在arr[i]==7

//endss[3  6  8    ]

//下标  0  1  2  len

//bs就是要找6的下标(大小最接近 arr[i]且比 arr[i] 小)

//而因为endss数组本质上具有单调性的,所以用二分搜索

int bs(int num){

    if(endss[0]>=num) return -1;

    int l=0,r=len-1;

   

    while(l<=r){

        int m=(l+r)/2;

        if(endss[m]>=num){

            r=m-1;

        }else{

            l=m+1;

        }

    }

    return l-1;

}

void solve2(int n){

    endss[0]=arr[0];

    len++;

    for(int i=1;i<n;i++){

        if(arr[i]>endss[len-1]){

            endss[len++]=arr[i];

        }else{

            int find=bs(arr[i]);

            if(find != -1){

                endss[++find]=arr[i];

            }else{

                endss[0]=arr[i];

            }

        }

    }

    cout<<"len = "<<len<<endl;

}

int main(){

    int n;

    cin>>n;

    for(int i=0;i<n;i++) cin>>arr[i];

    solve1(n);

    solve2(n);

   

    return 0;

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值