- 博客(5)
- 收藏
- 关注
原创 听 [小土堆PyTorch快速入门教程] 之神经网络
在PyTorch的官方文档可以清晰地认识到神经网络的结构:骨架,具体的类,处理层操作有哪些等等。这些就是图形的基本构建块,其中的Containers就是最基本的骨架Moudule就是构建神经网络的基类。
2025-06-22 15:53:33
1535
1
原创 听 [小土堆PyTorch快速入门教程] 之torchvision、DataLoader
drop_last: 是决定是否要留下余下的数据,例如一共有17张图像,你设置了每次抓取4张,这样就会余下一张凑不够4,这个时候drop_last就起到了关键作用,drop_last=False就是留下,drop_last=True就是舍弃。这个数据集包含了60000张 32*32的彩色图片,一共分了 10个类别(飞机,汽车,鸟类,猫,鹿,狗,青蛙,马,船,卡车),这些类别代表了日常生活和自然界中常见的物体类型,能够较为真实地模拟实际应用中的图像分类需求。dataset是指要处理的数据集。
2025-06-15 18:32:58
102
原创 听 [小土堆PyTorch快速入门教程] 之transforms
Compose用于组合多个图形转换(transform)操作,通过Compose,可以创建一个转换流程,这个流程可以按顺序执行多个图像处理操作,这些操作可以包括缩放,裁剪,归一化等,其需要的参数是一个列表,其元素类型是transform类型。这个数据集包含了60000张 32*32的彩色图片,一共分了 10个类别(飞机,汽车,鸟类,猫,鹿,狗,青蛙,马,船,卡车),这些类别代表了日常生活和自然界中常见的物体类型,能够较为真实地模拟实际应用中的图像分类需求。
2025-06-15 17:41:26
1430
原创 听 [小土堆PyTorch快速入门教程] 之Tensorboard的使用
add_saclar()用于在TransorBoard中添加标量数据,该方法可以用来添加训练过程中的损失值、准确率等指标,以便于在TensorBoard中进行可视化和比较。比如查看损失函数、准确率等的变化趋势,对比不同参数配置下的模型表现等等。add_scalar()函数的参数有 字符串,数值,其余都是有默认参数的大多数情况下就不用写了(可能会用到的global_step:整数)。在使用的时候,操作比较简单,导入模块调用SummaryWriter类,创建记录器指定目录,记录核心指标,最后关闭。
2025-06-15 17:01:10
1502
原创 PyTorch的安装和环境的配置(CPU版)
pycharm新建项目,并选择上刚刚新建的python编辑器环境(在此我选择的是先前建好的环境)判断是否安装成功:在Anaconda Prompt终端能够显示出来 base, 即安装成功。复制下来安装命令,再进入Anaconda Prompt 终端,在pytorch环境下进行安装。conda create -n 环境名字 python=安装的python版本。检验安装是否成功:在pytorch环境下,结果是True即为安装成功。安装pytorch之前可以搜索一下怎么配置镜像,在此就不说明了。
2025-06-14 20:41:24
320
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人