Python[数据结构及算法 --- 栈]

一.栈的概念

在 Python 中,栈(Stack)是一种 “  后进先出(LIFO)”的数据结构,仅允许在栈顶进行插入(push)和删除(pop)操作。

二.栈的抽象数据类型 

1.抽象数据类型 “栈” 定义:

<1>.Stack ():创建一个空栈,不包含任何数据项
<2>.push (item):将 item 加入栈顶,无返回值
<3>.pop ():将栈顶数据项移除,并返回,栈被修改
<4>.peek ():“窥视” 栈顶数据项,返回栈顶的数据项但不移除,栈不被修改
<5>.isEmpty ():返回栈是否为空栈
<6>.size ():返回栈中有多少个数据项 

2.简单操作样例:

Stack OperationStack ContentsReturn Value
s = Stack()[]Stack object
s.isEmpty()[]True
s.push(4)[4]
s.push('dog')[4, 'dog']
s.peek()[4, 'dog']'dog'
s.push(True)[4, 'dog', True]
s.size()[4, 'dog', True]3
s.isEmpty()[4, 'dog', True]False
s.push(8.4)[4, 'dog', True, 8.4]
s.pop()[4, 'dog', True]8.4
s.pop()[4, 'dog']True
s.size()[4, 'dog']2

3.操作实例代码实现:

class Stack:
    def __init__(self):
        self.items = []

    def isEmpty(self):
        return self.items == []
    
    def push(self,item):
        self.items.append(item)

    def pop(self):
        return self.items.pop()
    
    def peek(self):
        return self.items[len(self.items) - 1]
    
    def size(self):
        return len(self.items)

# 操作样例
s = Stack()
print("s.isEmpty():", s.isEmpty())  # True

s.push(4)
s.push('dog')
print("s.peek():", s.peek())  # 'dog'

s.push(True)
print("s.size():", s.size())  # 3
print("s.isEmpty():", s.isEmpty())  # False

s.push(8.4)
print("s.pop():", s.pop())  # 8.4
print("s.pop():", s.pop())  # True
print("s.size():", s.size())  # 2    

三.栈的应用

1.简单括号匹配:

class Stack:
    def __init__(self):
        self.items = []

    def isEmpty(self):
        return self.items == []
    
    def push(self,item):
        self.items.append(item)

    def pop(self):
        return self.items.pop()
    
    def peek(self):
        return self.items[len(self.items) - 1]
    
    def size(self):
        return len(self.items)
    
def parChecker(symbolString):
    s = Stack()
    balanced = True
    index = 0
    while index < len(symbolString) and balanced:
        symbol = symbolString[index]
        if symbol == "(":
            s.push(symbol)
        else:
            if s.isEmpty():
                balanced = False
            else:
                s.pop()

        index = index + 1

    if balanced and s.isEmpty():
        return True
    else:
        return False
    
# 测试示例
print(parChecker("((()))"))      # True
print(parChecker("(()"))        # Error: unmatched left parentheses
print(parChecker("(]"))         # Error at position 1: mismatched ']'
print(parChecker("{[()]}"))     # True
print(parChecker("{[(])}"))     # Error at position 3: mismatched ')'

代码分析:

1.提供的代码是一个使用栈(Stack)检查括号平衡性的函数 parChecker。这个函数可以判断一个字符串中的括号是否匹配(即每个左括号 ( 都有对应的右括号 ))。

2.实现过程:

<1>.初始化栈:创建一个空栈 s 用于存储左括号 (。

<2>.遍历字符串:从左到右扫描每个字符:

       遇到左括号 ( 时,将其压入栈。

       遇到右括号 ) 时:

如果栈为空,说明没有匹配的左括号,返回 False。

如果栈不为空,弹出栈顶元素(即匹配一个左括号)。

<3>.最终判断:遍历结束后,如果栈为空且所有括号都匹配,则返回 True,否则返回 False。

3.复杂度分析:

<1>.时间复杂度:O (n),其中 n 是字符串长度。

<2>.空间复杂度:O (n),最坏情况下栈存储所有左括号(如 "(((((")。

2.将十进制数转换成二进制数:

def divideBy2(decnumber):
    remstack = Stack()
    while decnumber > 0:
        rem = decnumber % 2
        remstack.push(rem)
        decnumber = decnumber // 2

    binstring = ""
    while not remstack.isEmpty():
        binstring = binstring + str(remstack.pop())

    return binstring

print(divideBy2(100))
print(divideBy2(200))
print(divideBy2(300))
print(divideBy2(400))
print(divideBy2(500))

代码分析:

1.提供的代码是一个使用栈(Stack)将十进制数转换为二进制数的函数 divideBy2。这个函数通过不断除以 2 并记录余数,最后反向拼接余数得到二进制表示。

2.实现过程:

<1>.初始化栈:创建一个空栈 remstack 用于存储每次除法的余数。

<2>.循环取余:当十进制数 decnumber 大于 0 时,不断进行以下操作:

                         1.计算 decnumber % 2 得到余数(0 或 1)。

                         2.将余数压入栈 remstack。

                         3.更新 decnumber 为其整数除法结果(decnumber // 2)。

<3>.拼接二进制字符串:从栈中弹出所有元素并拼接成字符串,得到二进制表示。

3.复杂度分析:

<1>.时间复杂度:O(log n)

每次循环将输入数减半,循环次数为 log₂(n),每次操作(取余、压栈)时间为 O (1)。

<2>.空间复杂度:O(log n)

栈中存储的余数数量为 log₂(n),拼接字符串的空间也为 log₂(n)。

优化改进:

将上述代码改进成可以任意进制转换,适配性更强:

class Stack:
    def __init__(self):
        self.items = []

    def isEmpty(self):
        return self.items == []
    
    def push(self,item):
        self.items.append(item)

    def pop(self):
        return self.items.pop()
    
    def peek(self):
        return self.items[len(self.items) - 1]
    
    def size(self):
        return len(self.items)
    
def baseConverter(decnumber,base):
    digits = "0123456789ABCDEF"
    remstack = Stack()
    while decnumber > 0:
        rem = decnumber % base
        remstack.push(rem)
        decnumber = decnumber // base

    newstring = ""
    while not remstack.isEmpty():
        newstring = newstring + digits[remstack.pop()]

    return newstring

print(baseConverter(100,2))
print(baseConverter(100,4))
print(baseConverter(100,6))
print(baseConverter(100,8))
print(baseConverter(100,10))
print(baseConverter(100,16))

以上就是一些比较经典的栈的应用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值