数据结构与算法:Dijkstra算法和分层图最短路

前言

这次的这些题感觉就会比前几篇要简单一点了,大多都是是背模板。

一、Dijkstra算法

Dijkstra算法是用在权值无负数的图上,用来找最短距离的算法,时间复杂度为O(m*logm)。

1.模板——网络延迟时间

class Solution {
public:

    //邻接表建图
    vector<vector<vector<int>>>graph;

    static bool cmp(vector<int>&a,vector<int>&b)
    {
        return a[1]>b[1];
    }

    int networkDelayTime(vector<vector<int>>& times, int n, int k) {
        int m=times.size();

        build(n);

        //建图
        for(int i=0;i<m;i++)
        {
            graph[times[i][0]].push_back({times[i][1],times[i][2]});
        }

        vector<int>distance(n+1,INT_MAX);
        distance[k]=0;
        vector<bool>visited(n+1,false);

        priority_queue<vector<int>,vector<vector<int>>,decltype(&cmp)>heap(cmp);
        heap.push({k,0});

        while(!heap.empty())
        {
            int u=heap.top()[0];
            heap.pop();

            if(!visited[u])
            {
                visited[u]=true;

                for(int i=0;i<graph[u].size();i++)
                {
                    int v=graph[u][i][0];
                    int w=graph[u][i][1];

                    if(!visited[v]&&distance[u]+w<distance[v])
                    {
                        distance[v]=distance[u]+w;
                        heap.push({v,distance[v]});
                    }
                }
            }
        }

        int ans=INT_MIN;
        for(int i=1;i<=n;i++)
        {
            ans=max(ans,distance[i]);
        }
        return ans==INT_MAX?-1:ans;
    }

    void build(int n)
    {
        graph.resize(n+1);
    }
};

Dijkstra算法的过程就是,首先设置distance数组存起点到每个点的最短距离,那么为了每次求最短,所以初始时每个点都设置成无穷大。之后除了还要设置一个visited数组记录来没来过,还要借助一个以distance为排序的小根堆。

之后只要堆不为空,每次取堆顶元素,没来过就去当前节点的所有边看,如果到当前节点的距离加上边权比下一个点的距离更小,即通过这条路能把去下一个节点的距离变得更小,就更新并入堆。

2.模板——【模板】单源最短路径(标准版)

#include<bits/stdc++.h>
using namespace std;

//邻接表建图
vector<vector<vector<int>>>graph; 

static bool cmp(vector<int>&a,vector<int>&b)
{
	return a[1]>b[1];
}

void build(int n)
{
	graph.resize(n+1);
}

void solve(int n,int m,int s,vector<vector<int>>&edges)
{
	build(n);
	
	//建图
	for(int i=0;i<m;i++)
	{
		graph[edges[i][0]].push_back({edges[i][1],edges[i][2]});	
	} 
	
	vector<int>distance(n+1,INT_MAX);
	distance[s]=0;
	vector<bool>visited(n+1,false);
	
	//小根堆 
	priority_queue<vector<int>,vector<vector<int>>,decltype(&cmp)>heap(cmp);
	heap.push({s,0});
	
	while(!heap.empty())
	{
		int u=heap.top()[0];
		heap.pop();
		if(!visited[u])
		{
			visited[u]=true;
			
			for(int i=0;i<graph[u].size();i++)
			{
				int v=graph[u][i][0];
				int w=graph[u][i][1];
				
				if(!visited[v]&&dis
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值