目录
一. 整数在内存中的存储
首先我们需要知道整数的2进制表示方式有三种,即原码,反码,补码。
有符号的整数,三种表示方式均匀符号位和数值位两部分,符号位用0表示正,用1表示负,最高位的一位是被当作符号位,剩余的都是数值位。无符号整数则全是数值位,原反补都相同。
正整数的原,反,补码都相同。
负整数的三种表示方式各不相同。
原码:直接将数值按照正负数的形式翻译成二进制得到的就是原码。
反码:将原码的符号位不变,其他位依次按位取反就可以得到反码。
补码:反码+1就得到补码。
对于整型来说:数据存放在内存中其实存放的是二进制的补码
为什么呢?
在计算机系统中,数值⼀律用补码来表示和存储。
原因在于,使用补码,可以将符号位和数值域统⼀处理;
同时,加法和减法也可以统⼀处理(CPU只有加法器)此外,补码与原码相互转换,其运算过程是
相同的,不需要额外的硬件电路。
二. 大小端字节序和字节序判断
首先我们需要观察下面代码的内存存储细节
#include <stdio.h>
int main()
{
int a = 0x11223344;
return 0;
}
调试出内存窗口 可以看见 a在内存存储中是倒序存储 那这是为什么呢?
首先数据是按字节存储 因此只要超过一个字节 那就会有字节顺序的问题 这是就有了大小端的概念
2.1 什么是大小端呢?
其实超过⼀个字节的数据在内存中存储的时候,就有存储顺序的问题,按照不同的存储顺序,我们分为大端字节序存储和小端字节序存储,下面是具体的概念:
大端(存储)模式:
是指数据的低位字节内容保存在内存的高地址处,而数据的高位字节内容,保存在内存的低地址处。
小端(存储)模式:
是指数据的低位字节内容保存在内存的低地址处,而数据的高位字节内容,保存在内存的高地址处。
2.2为什么有大小端
为什么会有大小端模式之分呢?
这是因为在计算机系统中,我们是以字节为单位的,每个地址单元都对应着⼀个字节,⼀个字节为8 bit 位,但是在C语言中除了8 bit 的 char 之外,还有16 bit 的 short 型,32 bit 的 long 型(要看
具体的编译器),另外,对于位数⼤于8位的处理器,例如16位或者32位的处理器,由于寄存器宽度大于⼀个字节,那么必然存在着⼀个如何将多个字节安排的问题。因此就导致了大端存储模式和小端存储模式。
例如:⼀个 16bit 的 short 型 x ,在内存中的地址为 0x0010 , x 的值为 0x1122 ,那么
0x11 为高字节, 0x22 为低字节。对于大端模式,就将 0x11 放在低地址中,即 0x0010 中,
0x22 放在高地址中,即 0x0011 中。小端模式,刚好相反。我们常用的 X86 结构是小端模式,而
KEIL C51 则为大端模式。很多的ARM,DSP都为小端模式。有些ARM处理器还可以由硬件来选择是大端模式还是小端模式。
📌 记住:大端是“人类友好”,小端是“机器友好”。
2.3 练习题
目的:辅助理解
2.3.1--------练习一
题目:请简述大端字节序和小端字节序的概念 设计⼀个小程序来判断当前机器的字节序。(10分)- 百度笔试题
#include <stdio.h>
// 检测系统字节序的函数
int check_sys()
{
int i = 1; // 定义一个整型变量i并赋值为1
// 将i的地址强制转换为char*类型,然后解引用
// 这样会访问i的最低地址字节(即第一个字节)
return (*(char*)&i);
}
int main()
{
// 调用检测函数
int ret = check_sys();
// 判断返回值
if (ret == 1)
{
printf("小端\n"); // 返回1表示小端存储
}
else
{
printf("大端\n"); // 返回0表示大端存储
}
return 0;
}
检测原理:
- 定义一个整型变量
i = 1
,在内存中的存储方式:
- 小端模式:
01 00 00 00
(低地址存储低位字节)- 大端模式:
00 00 00 01
(低地址存储高位字节)(char*)&i
将整型指针强制转换为字符指针,指向i的第一个字节*(char*)&i
解引用获取第一个字节的值结果判断:
- 如果返回1,表示第一个字节是1(小端模式)
- 如果返回0,表示第一个字节是0(大端模式)
2.3.2--------练习二
//练习2
#include <stdio.h>
int main()
{
char a = -1;
//-1原码:10000000 00000000 0000000 00000001
//反码: 11111111 11111111 1111111 11111110
//补码: 11111111 11111111 1111111 11111111
//放在char类型中,截断
//11111111
signed char b = -1;
-1原码:10000000 00000000 0000000 00000001
//反码: 11111111 11111111 1111111 11111110
//补码: 11111111 11111111 1111111 11111111
//放在char类型中,截断
//11111111
unsigned char c = -1;
-1原码:10000000 00000000 0000000 00000001
//反码: 11111111 11111111 1111111 11111110
//补码: 11111111 11111111 1111111 11111111
//放在char类型中,截断
//11111111
printf("a=%d,b=%d,c=%d", a, b, c);//-1 -1 255
//a整型提升后(整型提升按本身类型来),再按占位符要求打印
//11111111 11111111 11111111 11111111--补码
//10000000 00000000 00000000 00000000--
//10000000 00000000 00000000 00000001--原码
// -1
//b整型提升后
//11111111 11111111 11111111 11111111--补码
//10000000 00000000 00000000 00000000--
//10000000 00000000 00000000 00000001--原码
// -1
//c整型提升后(无符号整型),整型提升补0,原反补相同
//00000000 00000000 00000000 11111111--补码
//00000000 00000000 00000000 11111111--
//00000000 00000000 00000000 11111111--原码
// 255
return 0;
}
整型提升规则:
- 有符号类型:按符号位扩展(高位补符号位)
- 无符号类型:高位补0
2.3.3--------练习三
//练习3.1
#include <stdio.h>
int main()
{
char a = -128;
//-128的原码:10000000 00000000 00000000 10000000
//反码: 11111111 11111111 11111111 01111111
//补码: 11111111 11111111 11111111 10000000
//放在char类型中,截断
//10000000
printf("%u\n", a);//4294967168
//按char类型整型提升
//11111111 11111111 11111111 10000000--补码
//按占位符%u的要求打印即无符号整型,所以原反补相同,且没符号位
//11111111 11111111 11111111 10000000--原码
// 4294967168
return 0;
}
//练习3.2
#include <stdio.h>
int main()
{
char a = 128;
//-128的原码:00000000 00000000 00000000 10000000
//反码: 01111111 11111111 11111111 01111111
//补码: 01111111 11111111 11111111 10000000
//放在char类型中,截断
//10000000
printf("%u\n", a);// 4294967168
//按char类型整型提升
//11111111 11111111 11111111 10000000--补码
//按占位符%u的要求打印即无符号整型,所以原反补相同,且没符号位
//11111111 11111111 11111111 10000000--原码
// 4294967168
return 0;
}
2.3.4--------练习四
//练习4
#include <stdio.h>
#include <string.h>
int main()
{
char a[1000]; // 定义1000个元素的char数组,char范围是-128~127
int i;
// 循环赋值
for (i = 0; i < 1000; i++)
{
a[i] = -1 - i; // 依次赋值为-1, -2, -3, ..., -128, 127, 126, ..., 0, -1, ...
}
// 赋值过程分析:
// -1, -2, -3, ..., -127, -128 (正常范围)
// -129 (超出范围,被解释为127)
// 然后继续递减:126, 125, ..., 1, 0
// 0之后又回到-1,开始循环
printf("%zu", strlen(a)); // 输出255
// strlen计算的是从数组开始到第一个'\0'(ASCII 0)之前的字符数量
// 赋值序列中,0是第一个出现的'\0'字符
// 从-1到0共经历了255个值:
// -1到-128 (128个) + 127到1 (127个) = 255个
return 0;
}
关键点解析
char类型的取值范围:
- 有符号char的范围是-128到127
- 当赋值超出这个范围时会发生数值环绕
赋值序列分析:
-1, -2, ..., -127, -128, 127, 126, ..., 1, 0, -1, -2, ...
2.3.5--------练习五
//练习5.1
#include <stdio.h>
unsigned char i = 0;//unsigned char类型 0~255
int main()
{
//所以i<=255恒成立,255+1也会解读成0,再继续循环
for (i = 0;i <= 255;i++)
{
printf("hello world\n");
//死循环,一直打印
}
return 0;
}
//练习5.2
#include <stdio.h>
int main()
{
unsigned int i;//无符号整型恒大于0,所以条件一直成立
for (i = 9; i >= 0; i--)
{
printf("%u\n", i);
//死循环,9 8 …… 0,一个很大的数,一直减小再到0,接着循环
}
return 0;
}
2.3.6--------练习六
//练习6
#include <stdio.h>
//X86环境 小端字节序
int main()
{
int a[4] = { 1, 2, 3, 4 };
int* ptr1 = (int*)(&a + 1);
int* ptr2 = (int*)((int)a + 1);//转换成整型+1,只跳过一个字节
printf("%x,%x", ptr1[-1], *ptr2);
//0x 00 00 00 04--4
//0x 02 00 00 00--2000000
return 0;
}
%x
默认不显示0x
前缀,只输出十六进制数字
总结
- 整型提升的规则由变量原本的类型决定(
signed char
按符号位扩展,unsigned char
补0)。 - printf的占位符(如
%u
、%d
)只影响如何解释已经提升后的值,不会改变提升规则。
三. 浮点数在内存中的存储
常见的浮点数:3.14159、1E10()等,浮点数家族包括: float 、 double 、 long double 类型。
浮点数表示的范围: float.h中定义
3.1 练习
#include <stdio.h>
int main()
{
int n = 9;
float* pFloat = (float*)&n;
printf("n的值为:%d\n", n);
printf("*pFloat的值为:%f\n", *pFloat);
*pFloat = 9.0;
printf("n的值为:%d\n", n);
printf("*pFloat的值为:%f\n", *pFloat);
return 0;
}
输出结果如下:
现在让我们继续学习就可以知道原因
3.2 浮点数存的过程
上面的代码中, n 和 *pFloat 在内存中明明是同⼀个数,为什么浮点数和整数的解读结果会差别这
么大?
要理解这个结果,⼀定要搞懂浮点数在计算机内部的表示方法。
根据国际标准IEEE(电气和电子工程协会) 754,任意⼀个二进制浮点数V可以表示成下面的形式:
V = (−1) S ∗ M ∗ 2 E
(−1) S 表示符号位,当S=0,V为正数;当S=1,V为负数
M 表示有效数字,M是大于等于1,小于2的,十进制转换成二进制
表示指数位
举例来看:
十进制的5.0,写成⼆进制是 101.0 ,相当于 1.01×2^2 。
那么,按照上面V的格式,可以得出S=0,M=1.01,E=2。
十进制的-5.0,写成⼆进制是 -101.0 ,相当于 -1.01×2^2 。那么,S=1,M=1.01,E=2。
IEEE 754规定:
对于32位的浮点数(float),最高的1位存储符号位S,接着的8位存储指数E,剩下的23位存储有效数字M
对于64位的浮点数(double),最高的1位存储符号位S,接着的11位存储指数E,剩下的52位存储有效数字M
3.3 浮点数取的过程
指数E从内存中取出还可以再分成三种情况:
E不全为0或不全为1(常规情况)
这时,浮点数就采用下面的规则表示·,即指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第⼀位的1。
比如:0.5 的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为1.0*2^(-1),其阶码为-1+127(中间值)=126,表示为01111110,而尾数1.0去掉整数部分为0,补齐0到23位 00000000000000000000000,则其二进制表示形式为:
1. 0 01111110 00000000000000000000000
E全为0
这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,有效数字M不再加上第⼀位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于0的很小的数字。
1. 0 00000000 00100000000000000000000
E全为1
这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s);
1. 0 11111111 00010000000000000000000
关于浮点数的表示规则就到这里了。
3.4 题目解析
1. 变量定义
int n = 9;
float* pFloat = (float*)&n;
n
是int
类型变量,初始化为9
。pFloat
是float*
指针,强制指向n
的内存地址(将int
地址当作float
地址使用)。
2. 第一次输出
printf("n的值为:%d\n", n); // 输出:9
printf("*pFloat的值为:%f\n", *pFloat); // 输出:0.000000(或极小值)
解析:
n
的值:直接按int
解释,输出9
。*pFloat
的值:n
的二进制存储(假设int
为 4 字节,小端序):09 00 00 00 (十六进制:0x00000009)
- 但
float
遵循 IEEE 754 标准,0x00000009
被解释为:- 符号位:
0
(正数)。 - 指数位:
00000000
(非规格化数,极小值)。 - 尾数位:
00000000000000000001001
。 - 最终值是一个极小的浮点数(接近
0
),所以%f
输出0.000000
。
- 符号位:
3. 修改 *pFloat
*pFloat = 9.0;
解析:
- 将
n
的内存按float
写入9.0
。 9.0
的 IEEE 754 二进制表示:符号位:0(正数) 指数位:10000010(129 - 127 = 2,对应 2^2 = 4) 尾数位:00100000000000000000000 完整二进制:0 10000010 00100000000000000000000 十六进制:0x41100000
- 因此,
n
的内存被修改为0x41100000
。
4. 第二次输出
printf("n的值为:%d\n", n); // 输出:1091567616(0x41100000 的十进制)
printf("*pFloat的值为:%f\n", *pFloat); // 输出:9.000000
解析:
n
的值:- 内存
0x41100000
按int
解释,十进制值为1091567616
。
- 内存
*pFloat
的值:- 内存
0x41100000
按float
解释,就是9.0
,所以输出9.000000
。
- 内存
往期回顾:
《C 语言内存函数超详细讲解:从 memcpy 到 memcmp 的原理与实战》
《C 语言字符串操作从入门到实战(下篇):strncpy/strncat/strstr 等函数原理与实现》
《C 语言字符串操作从入门到实战(上篇):字符分类、转换及strlen/strcpy等函数详解》
结语:本篇文章就到此结束了,继前面一篇文章后,在此篇文章中给大家继续分享了数据在内存中的存储相关知识点,如整数在内存中的存储,大小端字节序和字节序判断,浮点数在内存中的存储等,后续会继续给分享其它内容,如果文章对你有帮助的话,欢迎评论,点赞,收藏加关注,感谢大家的支持。