2025.7.21日志

今天补了牛客周赛Round101的D和E题

76构造


这题是参考别人代码写的。

思路

  • 由于这是一个排列,1所在的区间gcd一定为1,最后这些区间在按位或的时候二进制最低位一定为1,是个奇数,当 m m m 为偶数时输出-1。
  • m m m 的二进制位数大于 n n n 的二进制位数时,所有区间的 g c d gcd gcd 结果按位或之后位数一定小于等于 n n n 的二进制位数,输出-1。
  • 排除两种情况后,一定可以构造出来。思考或 " ∣ " "|" "∣" 操作,有1结果就为1,可以理解结果为同一位次上的二进制数相加,但 " 1 + 1 = 1 " "1+1=1" "1+1=1" ,由此可以想到操作 m m m 的二进制数,假设有 k k k 位,从1到 k k k 遍历这 k k k 位,若 i i i 位上的数为1,则将1进行 1 > > ( i − 1 ) 1>>(i-1) 1>>(i1)操作得到的数单独作为一个区间(由上面的分析可知,排除 − 1 -1 1 的情况后,由这种方法构造出的每个数一定在 n n n 的排列中)。
  • 分成的区间个数显然就是 m m m 的二进制位数中1的个数再加1。
  • 学习到了新的函数 ,用于返回前导零的个数:
    (1)  _ _ b u i l t i n _ c l z ( u n s i g n e d   i n t   x ) 用于无符号整数 (2)  i n t   _ _ b u i l t i n _ c l z l ( u n s i g n e d   l o n g   x ) 用于无符号长整数 (3)  i n t   _ _ b u i l t i n _ c l z l l ( u n s i g n e d   l o n g   l o n g   x ) 用于无符号长长整数 \begin{array}{c} \text{(1) } \mathtt{\_\_builtin\_clz(unsigned~int~x)} \quad \text{用于无符号整数} \\ \\ \text{(2) } \mathtt{int~\_\_builtin\_clzl(unsigned~long~x)} \quad \text{用于无符号长整数} \\ \\ \text{(3) } \mathtt{int~\_\_builtin\_clzll(unsigned~long~long~x)} \quad \text{用于无符号长长整数} \end{array} (1) __builtin_clz(unsigned int x)用于无符号整数(2) int __builtin_clzl(unsigned long x)用于无符号长整数(3) int __builtin_clzll(unsigned long long x)用于无符号长长整数
    返回二进制中1的个数:
    (4)  _ _ b u i l t i n _ p o p c o u n t   ( u n s i g n e d   i n t ) 用于无符号整数 \text{(4) } \mathtt{\_\_builtin\_popcount~(unsigned~int)} \quad \text{用于无符号整数} (4) __builtin_popcount (unsigned int)用于无符号整数

代码

void solve()
{
	int n,m;
    cin>>n>>m;
    if(m%2==0) 
    {
        cout<<-1;
        return;
    }
    
    if(__builtin_clz(n)>__builtin_clz(m)) 
    {
        cout<<-1;
        return;
    }
    int len=32-__builtin_clz(m);
    set<int> a;
    for(int i=1;i<len;i++)
    {
        if(m>>i&1)
        {
            cout<<(1<<i)<<" ";
            a.insert(1<<i);
        }
    }
    for(int i=1;i<=n;i++)
    {
        if(a.find(i)==a.end()) cout<<i<<" ";
    }
    cout<<endl<<__builtin_popcount(m)<<endl;
    for(int i=1;i<=a.size();i++)
        cout<<i<<" "<<i<<endl;
    cout<<a.size()+1<<" "<<n;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值