今天补了牛客周赛Round101的D和E题
76构造
这题是参考别人代码写的。
思路
- 由于这是一个排列,1所在的区间gcd一定为1,最后这些区间在按位或的时候二进制最低位一定为1,是个奇数,当 m m m 为偶数时输出-1。
- 当 m m m 的二进制位数大于 n n n 的二进制位数时,所有区间的 g c d gcd gcd 结果按位或之后位数一定小于等于 n n n 的二进制位数,输出-1。
- 排除两种情况后,一定可以构造出来。思考或 " ∣ " "|" "∣" 操作,有1结果就为1,可以理解结果为同一位次上的二进制数相加,但 " 1 + 1 = 1 " "1+1=1" "1+1=1" ,由此可以想到操作 m m m 的二进制数,假设有 k k k 位,从1到 k k k 遍历这 k k k 位,若 i i i 位上的数为1,则将1进行 1 > > ( i − 1 ) 1>>(i-1) 1>>(i−1)操作得到的数单独作为一个区间(由上面的分析可知,排除 − 1 -1 −1 的情况后,由这种方法构造出的每个数一定在 n n n 的排列中)。
- 分成的区间个数显然就是 m m m 的二进制位数中1的个数再加1。
- 学习到了新的函数 ,用于返回前导零的个数:
(1) _ _ b u i l t i n _ c l z ( u n s i g n e d i n t x ) 用于无符号整数 (2) i n t _ _ b u i l t i n _ c l z l ( u n s i g n e d l o n g x ) 用于无符号长整数 (3) i n t _ _ b u i l t i n _ c l z l l ( u n s i g n e d l o n g l o n g x ) 用于无符号长长整数 \begin{array}{c} \text{(1) } \mathtt{\_\_builtin\_clz(unsigned~int~x)} \quad \text{用于无符号整数} \\ \\ \text{(2) } \mathtt{int~\_\_builtin\_clzl(unsigned~long~x)} \quad \text{用于无符号长整数} \\ \\ \text{(3) } \mathtt{int~\_\_builtin\_clzll(unsigned~long~long~x)} \quad \text{用于无符号长长整数} \end{array} (1) __builtin_clz(unsigned int x)用于无符号整数(2) int __builtin_clzl(unsigned long x)用于无符号长整数(3) int __builtin_clzll(unsigned long long x)用于无符号长长整数
返回二进制中1的个数:
(4) _ _ b u i l t i n _ p o p c o u n t ( u n s i g n e d i n t ) 用于无符号整数 \text{(4) } \mathtt{\_\_builtin\_popcount~(unsigned~int)} \quad \text{用于无符号整数} (4) __builtin_popcount (unsigned int)用于无符号整数
代码
void solve()
{
int n,m;
cin>>n>>m;
if(m%2==0)
{
cout<<-1;
return;
}
if(__builtin_clz(n)>__builtin_clz(m))
{
cout<<-1;
return;
}
int len=32-__builtin_clz(m);
set<int> a;
for(int i=1;i<len;i++)
{
if(m>>i&1)
{
cout<<(1<<i)<<" ";
a.insert(1<<i);
}
}
for(int i=1;i<=n;i++)
{
if(a.find(i)==a.end()) cout<<i<<" ";
}
cout<<endl<<__builtin_popcount(m)<<endl;
for(int i=1;i<=a.size();i++)
cout<<i<<" "<<i<<endl;
cout<<a.size()+1<<" "<<n;
}