2025.9.2日志

洛谷P3956 棋盘(dfs/bfs)

题意:

一张大小 m∗mm*mmm 的棋盘,每个格子有无色、黄色、红色三种可能,所站的格子上必须有颜色,走到下一个格子花费 111 个金币,当且仅当当前格子颜色与上一个格子的颜色不同,颜色相同不花费金币,可以耗费 222 金币使用魔法使得下一个无色的格子暂时变成任意颜色,走过这个格子后,该格子变回无色。问从棋盘的左上角走到右下角花费的最少金币数。

初始思路:

考虑用二元组 (x,y)(x,y)(x,y) 表示当前搜索到的格子,附带参数 costcostcost 表示当前已用金币数,参数 flagflagflag 表示上一个格子是否使用魔法。我用 BFSBFSBFS 搜索,写完后连样例都没过,不过这种思路没有问题。我的代码问题是没有对走到当前格的最小花费与当前的花费比较,导致了当前格的正确最小花费被错误地更新。只需开一个 cstcstcst 数组记录每个格子的最小花费。

DFS思路:

看的洛谷题解:

思路转换:

  • 上面的思路是对一个格子的上下左右四个方向进行搜索,这样不好处理对格子施加魔法的情况。
  • 考虑施加魔法的本质就是允许走到曼哈顿距离是 222 且有颜色的下一个格子中。这样暂且不考虑不同颜色格子带来的花费,总会花费 222 的金币数。总代价为:走到相同或不同格子里的花费 +2+ 2+2

搜索方案:

对周围十二个方向搜索:

  • 需走一个格子:(x−1,y),(x,y−1),(x+1,y),(x,y+1)(x-1,y),(x,y-1),(x+1,y),(x,y+1)(x1,y),(x,y1),(x+1,y),(x,y+1)
  • 需走两个格子:(x−1,y−1),(x−2,y),(x−1,y+1),(x,y+2),(x+1,y+1),(x+2,y),(x+1,y−1),(x,y−2)(x-1,y-1),(x-2,y),(x-1,y+1),(x,y+2),(x+1,y+1),(x+2,y),(x+1,y-1),(x,y-2)(x1,y1),(x2,y),(x1,y+1),(x,y+2),(x+1,y+1),(x+2,y),(x+1,y1),(x,y2)
  • 在这样的情况下,可能存在 (x,y)→(x+2,y)(x,y)→(x+2,y)(x,y)(x+2,y),但本身 (x+1,y)(x+1,y)(x+1,y) 是有颜色的情况。走 222 步会多算代价,但是结合了走 111 步的方法,最终这两步会由走 111 步的方法生成最小答案。

剪枝:

当前已用金币数若大于等于当前格的金币数,就没必要向下搜了,直接returnreturnreturn

答案统计:

当当前格子是(m,m)(m,m)(m,m) 时,用 ansansans 更新答案,但有一种情况要单独考虑:
如果 (m,m)(m,m)(m,m) 无色,会导致无法统计,因为搜索会跳过没有颜色的格子。所以在跳到格子(m−1,m)(m-1,m)(m1,m) 或者(m,m−1)(m,m-1)(m,m1) 时,判断 (m,m)(m,m)(m,m) 的颜色是否存在,如果不存在的话,则答案对 q+2q+2q+2minminmin

代码:

#include<bits/stdc++.h>
using namespace std;

const int N=110;
const int MAX=0x3f3f3f3f;

int col[N][N],cst[N][N];
bool vis[N][N];
int dx[]={0,-1,0,1,-1,-1,1,1,0,-2,0,2};
int dy[]={-1,0,1,0,-1,1,1,-1,-2,0,2,0};
int cost[]={0,0,0,0,2,2,2,2,2,2,2,2};

int main()
{
    int n,m;
    cin>>m>>n;

    for(int i=1,x,y,c;i<=n;i++) 
    {
        cin>>x>>y>>c;
        col[x][y]=c+1;
    }
    int ans=MAX;
    memset(cst,0x3f,sizeof cst);
    // cout<<cst[0];
    auto dfs=[&](auto& self,int x,int y,int ct)->void
    {
        if(cst[x][y]<=ct) return;
        cst[x][y]=ct;
        if(x==m&&y==m) {ans=min(ans,ct);return;}
        if(x+y==2*m-1&&col[x][y]==0) {ans=min(ans,ct+2);return;}
        vis[x][y]=true;
        for(int i=0;i<12;i++)
        {
            int nx=x+dx[i];
            int ny=y+dy[i];
            if(nx>=1&&nx<=m&&ny>=1&&ny<=m&&!vis[nx][ny]&&col[nx][ny]!=0)
            {
                int tmp=cost[i];
                tmp+=(col[x][y]==col[nx][ny]? 0:1);
                self(self,nx,ny,ct+tmp);
            }
        }
        vis[x][y]=false;
    };
    dfs(dfs,1,1,0);
    if(ans==MAX) cout<<-1;
    else 
    cout<<ans;
    return 0;
}

BFS思路:

  • 对于每个格子,上下左右扩展,每个格子除了记录坐标 (x,y)(x,y)(x,y),还有上一个格子是否使用了魔法,用 flagflagflag标记;当前格子的使用的金币数;当前格子的颜色。
  • 格子的颜色记录是为了方便动态记录施加魔法导致的颜色变化。
  • 写完后遇到的问题:
    • 魔法会临时改变格子颜色(逻辑上),但 bugbugbug 代码只读取网格初始颜色 colcolcol,未在状态中保存动态颜色。
    • 例如:从有颜色格子 AAA 移动到无颜色格子 BBB(使用魔法,颜色继承 AAA)。当从 BBB 移动到 CCC 时:正确:应比较 BBB 的魔法颜色(即 AAA 的颜色)和 CCC 的颜色。错误:比较的是 BBB 的初始网格颜色 (0)(0)(0)CCC 的颜色,导致花费计算错误。
  • 改正:在 nodenodenode 结构体中添加 colcolcol 字段,记录上一个格子的颜色。

分类讨论细节在代码中:

#include <bits/stdc++.h>
using namespace std;

struct node
{
    int x,y,cost,flag,col;
};

int dx[]={-1,0,1,0};
int dy[]={0,-1,0,1};

int main()
{
    int n,m;
    cin>>m>>n;
    
    vector<vector<int>> col(m+1,vector<int>(m+1));
    vector<vector<int>> cst(m+1,vector<int>(m+1,0x3f3f3f3f));
    queue<node> q;

    for(int i=1;i<=n;i++) 
    {
        int x,y,c;
        cin>>x>>y>>c;
        col[x][y]=c+1;
    }

    q.push({1,1,0,0,col[1][1]});
    cst[1][1]=0;
    while(!q.empty())
    {
        node now=q.front();
        q.pop();
        int x=now.x,y=now.y;
        int ct=now.cost;
        for(int i=0;i<4;i++)
        {
            int nx=x+dx[i],ny=y+dy[i];
            if(nx<1||nx>m||ny<1||ny>m||(now.flag&&col[nx][ny]==0))continue;
            node next={nx,ny,0,0,0};
            int sum=0;
            if(col[nx][ny]>0)
            {
                if(col[nx][ny]==now.col)
                    sum=0;
                else 
                    sum=1;
                next.flag=0;
                next.col=col[nx][ny];
            }
            else
            {
                sum=2;
                next.flag=1;
                // col[nx][ny]=col[x][y];//这样不行,不知道为啥。
                next.col=now.col;
            }
            next.cost=sum+ct;
            if(next.cost<cst[nx][ny])
            {
                cst[nx][ny]=next.cost;
                q.push(next);
            }
        }
    }
    if(cst[m][m]==0x3f3f3f3f) cout<<-1;
    else cout<<cst[m][m];
    return 0;
}

总结

写完这个题目让我觉得,学习搜索要大量刷题,体会dfs的剪枝,bfs中节点字段的设置..................

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值