洛谷P3956 棋盘(dfs/bfs)
题意:
一张大小 m∗mm*mm∗m 的棋盘,每个格子有无色、黄色、红色三种可能,所站的格子上必须有颜色,走到下一个格子花费 111 个金币,当且仅当当前格子颜色与上一个格子的颜色不同,颜色相同不花费金币,可以耗费 222 金币使用魔法使得下一个无色的格子暂时变成任意颜色,走过这个格子后,该格子变回无色。问从棋盘的左上角走到右下角花费的最少金币数。
初始思路:
考虑用二元组 (x,y)(x,y)(x,y) 表示当前搜索到的格子,附带参数 costcostcost 表示当前已用金币数,参数 flagflagflag 表示上一个格子是否使用魔法。我用 BFSBFSBFS 搜索,写完后连样例都没过,不过这种思路没有问题。我的代码问题是没有对走到当前格的最小花费与当前的花费比较,导致了当前格的正确最小花费被错误地更新。只需开一个 cstcstcst 数组记录每个格子的最小花费。
DFS思路:
看的洛谷题解:
思路转换:
- 上面的思路是对一个格子的上下左右四个方向进行搜索,这样不好处理对格子施加魔法的情况。
- 考虑施加魔法的本质就是允许走到曼哈顿距离是 222 且有颜色的下一个格子中。这样暂且不考虑不同颜色格子带来的花费,总会花费 222 的金币数。总代价为:走到相同或不同格子里的花费 +2+ 2+2 。
搜索方案:
对周围十二个方向搜索:
- 需走一个格子:(x−1,y),(x,y−1),(x+1,y),(x,y+1)(x-1,y),(x,y-1),(x+1,y),(x,y+1)(x−1,y),(x,y−1),(x+1,y),(x,y+1)
- 需走两个格子:(x−1,y−1),(x−2,y),(x−1,y+1),(x,y+2),(x+1,y+1),(x+2,y),(x+1,y−1),(x,y−2)(x-1,y-1),(x-2,y),(x-1,y+1),(x,y+2),(x+1,y+1),(x+2,y),(x+1,y-1),(x,y-2)(x−1,y−1),(x−2,y),(x−1,y+1),(x,y+2),(x+1,y+1),(x+2,y),(x+1,y−1),(x,y−2)
- 在这样的情况下,可能存在 (x,y)→(x+2,y)(x,y)→(x+2,y)(x,y)→(x+2,y),但本身 (x+1,y)(x+1,y)(x+1,y) 是有颜色的情况。走 222 步会多算代价,但是结合了走 111 步的方法,最终这两步会由走 111 步的方法生成最小答案。
剪枝:
当前已用金币数若大于等于当前格的金币数,就没必要向下搜了,直接returnreturnreturn。
答案统计:
当当前格子是(m,m)(m,m)(m,m) 时,用 ansansans 更新答案,但有一种情况要单独考虑:
如果 (m,m)(m,m)(m,m) 无色,会导致无法统计,因为搜索会跳过没有颜色的格子。所以在跳到格子(m−1,m)(m-1,m)(m−1,m) 或者(m,m−1)(m,m-1)(m,m−1) 时,判断 (m,m)(m,m)(m,m) 的颜色是否存在,如果不存在的话,则答案对 q+2q+2q+2 取 minminmin。
代码:
#include<bits/stdc++.h>
using namespace std;
const int N=110;
const int MAX=0x3f3f3f3f;
int col[N][N],cst[N][N];
bool vis[N][N];
int dx[]={0,-1,0,1,-1,-1,1,1,0,-2,0,2};
int dy[]={-1,0,1,0,-1,1,1,-1,-2,0,2,0};
int cost[]={0,0,0,0,2,2,2,2,2,2,2,2};
int main()
{
int n,m;
cin>>m>>n;
for(int i=1,x,y,c;i<=n;i++)
{
cin>>x>>y>>c;
col[x][y]=c+1;
}
int ans=MAX;
memset(cst,0x3f,sizeof cst);
// cout<<cst[0];
auto dfs=[&](auto& self,int x,int y,int ct)->void
{
if(cst[x][y]<=ct) return;
cst[x][y]=ct;
if(x==m&&y==m) {ans=min(ans,ct);return;}
if(x+y==2*m-1&&col[x][y]==0) {ans=min(ans,ct+2);return;}
vis[x][y]=true;
for(int i=0;i<12;i++)
{
int nx=x+dx[i];
int ny=y+dy[i];
if(nx>=1&&nx<=m&&ny>=1&&ny<=m&&!vis[nx][ny]&&col[nx][ny]!=0)
{
int tmp=cost[i];
tmp+=(col[x][y]==col[nx][ny]? 0:1);
self(self,nx,ny,ct+tmp);
}
}
vis[x][y]=false;
};
dfs(dfs,1,1,0);
if(ans==MAX) cout<<-1;
else
cout<<ans;
return 0;
}
BFS思路:
- 对于每个格子,上下左右扩展,每个格子除了记录坐标 (x,y)(x,y)(x,y),还有上一个格子是否使用了魔法,用 flagflagflag标记;当前格子的使用的金币数;当前格子的颜色。
- 格子的颜色记录是为了方便动态记录施加魔法导致的颜色变化。
- 写完后遇到的问题:
- 魔法会临时改变格子颜色(逻辑上),但 bugbugbug 代码只读取网格初始颜色 colcolcol,未在状态中保存动态颜色。
- 例如:从有颜色格子 AAA 移动到无颜色格子 BBB(使用魔法,颜色继承 AAA)。当从 BBB 移动到 CCC 时:正确:应比较 BBB 的魔法颜色(即 AAA 的颜色)和 CCC 的颜色。错误:比较的是 BBB 的初始网格颜色 (0)(0)(0) 和 CCC 的颜色,导致花费计算错误。
- 改正:在 nodenodenode 结构体中添加 colcolcol 字段,记录上一个格子的颜色。
分类讨论细节在代码中:
#include <bits/stdc++.h>
using namespace std;
struct node
{
int x,y,cost,flag,col;
};
int dx[]={-1,0,1,0};
int dy[]={0,-1,0,1};
int main()
{
int n,m;
cin>>m>>n;
vector<vector<int>> col(m+1,vector<int>(m+1));
vector<vector<int>> cst(m+1,vector<int>(m+1,0x3f3f3f3f));
queue<node> q;
for(int i=1;i<=n;i++)
{
int x,y,c;
cin>>x>>y>>c;
col[x][y]=c+1;
}
q.push({1,1,0,0,col[1][1]});
cst[1][1]=0;
while(!q.empty())
{
node now=q.front();
q.pop();
int x=now.x,y=now.y;
int ct=now.cost;
for(int i=0;i<4;i++)
{
int nx=x+dx[i],ny=y+dy[i];
if(nx<1||nx>m||ny<1||ny>m||(now.flag&&col[nx][ny]==0))continue;
node next={nx,ny,0,0,0};
int sum=0;
if(col[nx][ny]>0)
{
if(col[nx][ny]==now.col)
sum=0;
else
sum=1;
next.flag=0;
next.col=col[nx][ny];
}
else
{
sum=2;
next.flag=1;
// col[nx][ny]=col[x][y];//这样不行,不知道为啥。
next.col=now.col;
}
next.cost=sum+ct;
if(next.cost<cst[nx][ny])
{
cst[nx][ny]=next.cost;
q.push(next);
}
}
}
if(cst[m][m]==0x3f3f3f3f) cout<<-1;
else cout<<cst[m][m];
return 0;
}
总结
写完这个题目让我觉得,学习搜索要大量刷题,体会dfs的剪枝,bfs中节点字段的设置..................。