基于电商大数据的商品推荐系统
关键词:电商大数据, 商品推荐系统, 协同过滤, 深度学习, 内容推荐, 交叉验证, TensorFlow
1. 背景介绍
1.1 问题由来
随着电子商务的兴起,大数据在商品推荐领域的应用日益广泛。传统的基于内容的推荐系统往往难以处理用户的个性化需求,而基于协同过滤的推荐系统,尽管能更灵活地利用用户行为数据,但在处理数据稀疏性、冷启动问题上也存在诸多挑战。大数据时代的到来,为深度学习在商品推荐系统中的应用提供了新的契机。
2. 核心概念与联系
2.1 核心概念概述
为更好地理解基于电商大数据的商品推荐系统,本节将介绍几个密切相关的核心概念:
电商大数据(E-commerce Big Data):指在线电商平台上用户行为、交易数据、商品信息等海量数据。电商大数据包含了用户的浏览、点击、购买、评价、评论等行为数据,为商品推荐系统提供了丰富的数据来源。
商品推荐系统(Recommendation System):旨在根据用户的历史行为和偏好,推荐可能感兴趣的购物篮或商品列表。商品推荐系统是电商平台提高用户体验、提升交易转化率的重要工具。
协同过滤(Collaborative Filtering):一种基于用户行为相似性的推荐算法。通过计算用户和商品之间的相似度,找到相似的物品,对用户未评分的物品进行推荐