在我们关于NumPy优化的系列文章中,这是第四部分。在第一部分和第二部分,我们探讨了向量化和广播的概念,以及如何将它们应用于优化K - Means聚类算法的实现。第三部分则涵盖了NumPy中诸如步幅、重塑(reshape)和转置(transpose)等重要概念。而在本文中,我们将探讨如何运用这些概念来加速基于深度学习的目标检测器——YOLO。
理解问题
我们面临的问题再次源于嵌套循环。几年前我在处理基于深度学习的目标检测器YOLO的输出管道时遇到了这个问题。YOLO使用卷积神经网络来预测图像中的物体,其输出是一个卷积特征图。简单来说,卷积特征图是一个具有多个通道的空间网格,每个通道包含关于空间网格中所有位置的特定特征的信息。例如,一幅图像也可被定义为一个卷积特征图,它有3个通道,分别描述红、绿、蓝颜色的强度。
假设我们要检测一张包含火车头的图像中的物体,将图像输入网络后,输出的特征图会被划分为网格。特征图的每个单元格会在图像中对应网格单元格的特定部分寻找物体,每个单元格包含关于3个以网格为中心的边界框的数据。如果是一个3×3的网格,就会有3×3×3 = 27个这样的边界框数据。输出管道会过滤这些边界框,只留下包含物体的少数几个,而大多数会被拒绝。典型的步骤包括:基于某个分数对边界框进行阈值处理;去除指向同一物体的重叠边界框,只保留一个;将数据转换为可在图像上绘制的实际边界框。
然而,由于卷积特征图中信息的存储方式,执行上述操作可能会导致代码混乱。为了使代码更易于阅读和管理,我们需要将卷积特征图中存储的信息重新排列成表格形式,这就是我们要解决的问题——重新排列信息。
实验设置
为了进行这个实验,我们可以从指定