文章目录
一、链表的分类
链表的结构多样,可通过以下三个维度组合出 8 种类型:
- 方向
-
单向:只能从一个方向遍历
-
双向:可以从两个方向遍历
-
- 头部:
-
带头(有哨兵位)
-
不带头
-
- 循环性:
-
循环
-
非循环
-
常用链表类型
(1)无头单向非循环链表(单链表)
- 特点: 结构简单,无哨兵位节点,最后一个节点的
next
为NULL
- 应用场景: 多作为其他数据结构的子结构(如哈希桶、图的邻接表),笔试面试高频考点
(2)带头双向循环链表(双向链表)
- 特点: 包含哨兵位头节点,每个节点有
prev
和next
两个指针,尾节点的next
指向头节点 - 优势: 操作统一(无需特殊处理空链表或首尾节点),实现简单
- 应用场景: 单独存储数据(如
STL
中的list
)
二、双向链表的结构
双向链表中,我们重点关注的是带头双向循环链表。这里的“带头”需要特别说明,它和单链表中我们常说的“头节点”不是一个概念。在单链表阶段,我们对“头节点”的称呼其实并不严谨,为了便于理解才那样称呼。而带头双向循环链表中的“头节点”,实际是“哨兵位”。
“哨兵位”节点不存储任何有效元素,它就像一个站在那里“放哨”的节点,其存在的最大意义是避免在遍历循环链表时出现死循环。有了这个哨兵位,我们在进行链表的遍历等操作时,就有了一个明确的起点和终点判断依据,大大降低了出错的概率。
三、双向链表的实现
1. 节点结构定义
双向链表的节点结构。每个节点不仅要存储数据,还要有两个指针,分别指向它的前一个节点和后一个节点,具体定义如下:
typedef int LTDataType;
typedef struct ListNode
{
struct ListNode* next; // 下一个节点
struct ListNode* prev; // 前一个节点
LTDataType data;
}LN;
2. 主要操作函数
(1) 初始化(LTInit)
初始化函数用于创建双向链表的哨兵位节点,并构建带头双向循环的初始结构。
注意:
- 单链表初始化:空链表
- 双向链表初始化:只有一个头节点(哨兵位)
实现思路:
- 动态开辟一个哨兵位节点。
- 让哨兵位节点的
prev
和next
指针都指向自身,形成循环结构。
注意: 不可以把prev
和next
指向空,无法达到循环的效果
LN* LTInit()
{
LN* phead = (LN*)malloc(sizeof(LN));
if (phead == NULL)
{
perror("malloc fail");
exit(-1);
}
phead->next = phead;
phead->prev = phead;
return phead;
}
该函数返回初始化好的哨兵位节点
(2)销毁函数(LTDestroy)
销毁函数用于释放链表中所有节点(包括哨兵位)的内存,避免内存泄漏。
实现思路:
- 先判断链表是否为空,若为空则直接释放哨兵位。
- 若不为空,通过遍历找到每一个节点并释放,最后释放哨兵位。
void LTDes(LN* phead)
{
assert(phead);
LN* pcur= phead->next;
while (pcur->next != phead)
{
LN* next = pcur->next;
free(pcur);
pcur = next;
}
free(phead);
phead = NULL;
}
通过循环遍历释放除哨兵位外的所有节点,最后释放哨兵位,完成链表的销毁。
(3)打印(LTPrint)
实现思路:
- 哨兵位没有有效数据,从哨兵位的下一个节点开始遍历。
- 遍历至重新回到哨兵位时停止,依次打印每个节点的数据。
void LTPrint(LN* phead)
{
assert(phead);
LN* cur = phead->next;
printf("哨兵位<->");
while (cur != phead)
{
printf("%d<->", cur->data);
cur = cur->next;
}
printf("\n");
}
(4)尾插(LTPushBack)
注意: 无论头插尾插还是头删尾删,都不可以改变哨兵位,因此这里传递一级指针即可
实现思路:
- 找到链表的尾节点(哨兵位的
prev
指针所指节点)。 - 建立新节点与尾节点、哨兵位之间的双向链接。
void LTPushBack(LN* phead ,LTDataType x)
{
assert(phead);
LN* newNode = LTBuyNode(x);
//先改newNode
newNode->prev = phead->prev;
newNode->next = phead;
//两行代码不能交换
phead->prev->next = newNode;
phead->prev = newNode;
}
(5)尾删(LTPopBack)
实现思路:
- 先判断链表是否为空,为空则无法删除。
- 找到尾节点及其前一个节点,通过调整指针解除尾节点的链接并释放其内存。
void LTPopBack(LN* phead)
{
assert(phead && phead->next != phead);
LN* del = phead->prev;
del->prev->next = phead;
phead->prev = del->prev;
free(del);
del = NULL;
}
(6)头插(LTPushFront)
头部插入函数用于在哨兵位之后添加新节点。
实现思路:
- 找到哨兵位的下一个节点(原头节点)。
- 建立新节点与哨兵位、原头节点之间的双向链接。
void LTPushFront(LN* phead, LTDataType x)
{
assert(phead);
LN* newNode = LTBuyNode(x);
newNode->next = phead->next;
newNode->prev = phead;
//这两行代码不可以交换
phead->next->prev = newNode;
phead->next = newNode;
}
利用双向链表的指针特性,快速完成头部插入操作。
(7)头删(LTPopFront)
头部删除函数用于移除哨兵位之后的第一个节点。
实现思路:
- 先判断链表是否为空,为空则无法删除。
- 找到原头节点及其下一个节点,调整指针解除原头节点的链接并释放其内存。
void LTPopFront(LN* phead)
{
assert(phead && phead->next != phead);
LN* del = phead->next;
phead->next = del->next;
del->next->prev = phead;
free(del);
del = NULL;
}
(8)指定位置后插入函数(LTInsert)
实现思路:
- 找到pos节点的下一个节点。
- 建立新节点与pos节点、pos下一个节点之间的双向链接。
void LTInsert(LN* pos, LTDataType x)
{
assert(pos);
LN* newNode = LTBuyNode(x);
newNode->prev = pos;
newNode->next = pos->next;
pos->next->prev = newNode;
pos->next = newNode;
}
该方法可以包含头插操作,但是头插不包含该操作。根本区别是头插给定的节点是哨兵位,哨兵位不能存放有效数据
(9)指定位置删除函数(LTErase)
实现思路:
- 找到pos节点的前一个和后一个节点。
- 调整这两个节点的指针,解除与pos节点的链接并释放pos节点的内存。
void LTErase(LN* pos)
{
assert(pos && pos->next!=pos);
pos->next->prev = pos->prev;
pos->prev->next = pos->next;
free(pos);
pos = NULL;
}
通过该函数可方便地实现头删、尾删等操作。
(10) 查找函数(LTFind)
查找函数用于在链表中寻找数据为x的节点。
实现思路:
- 从哨兵位的下一个节点开始遍历。
- 若找到数据为x的节点则返回该节点,遍历结束仍未找到则返回NULL。
LTNode* LTFind(LTNode* phead, LTDataType x)
{
assert(phead);
LTNode* cur = phead->next;
while (cur != phead)
{
if (cur->data == x)
{
return cur;
}
cur = cur->next;
}
return NULL;
}
注意:
理论上来说以下三个函数应该传二级指针,但是这会增加调用方记忆成本。
void LTInsert(LN* pop, LTDataType x);
void LTErase(LN* pop);
void LTDes(LN* phead);
为了统一接口,可以统一传入一级指针,但存在的问题是:形参改变(phead
置为NULL
)不会影响实参,这就需要调用方手动把plist
置空
四、顺序表和双向链表的优缺点分析
为了更好地理解双向链表的适用场景,我们将它与顺序表进行对比分析:
不同点 | 顺序表 | 链表(这里主要指双向链表) |
---|---|---|
存储空间上 | 物理上一定连续 | 逻辑上连续,但物理上不一定连续 |
随机访问 | 支持,时间复杂度为O(1) | 不支持,时间复杂度为O(N) |
任意位置插入或者删除元素 | 可能需要搬移元素,效率低,时间复杂度为O(N) | 只需修改指针指向,效率高 |
插入相关 | 动态顺序表在空间不够时需要扩容 | 没有容量的概念,不需要扩容 |
应用场景 | 适用于元素高效存储且需要频繁访问的场景 | 适用于任意位置插入和删除操作频繁的场景 |
通过以上对比可以看出,顺序表和双向链表各有其优势和劣势。在实际开发中,我们需要根据具体的应用场景来选择合适的数据结构。如果需要频繁地访问元素,那么顺序表是更好的选择;如果需要频繁地进行插入和删除操作,尤其是在任意位置进行这些操作,那么双向链表会更合适。