自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(25)
  • 收藏
  • 关注

原创 【机器学习】PCA

主成分分析(Principal Component Analysis,PCA)是一种经典的无监督降维方法,其核心思想是通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,这些新的变量被称为"主成分"。

2025-06-12 21:52:40 1118

原创 【机器学习】支持向量机(SVM)

支持向量机是一种基于间隔最大化原则的监督学习模型,它通过找到数据集中的最优超平面来区分不同的类别。在二维空间中,这个超平面可以看作是一条线;在三维空间中,它是一个平面;而在更高维空间中,它是一个超平面。

2025-06-02 19:47:25 1541 6

原创 理想低通滤波

振铃效应:由于理想滤波器的陡峭截止,会在图像边缘产生伪影(Gibbs现象)。其中 D(u,v) 为频率点到中心的距离,D0为截止频率。低频保留:平滑图像,去除高频噪声(如边缘细节)。D0增大:更多细节保留,但振铃效应更明显。D0较小:图像模糊严重(仅保留极低频)。

2025-05-22 09:43:03 222

原创 【机器学习】logistic回归

logistic回归是一种二分类或多分类的概率型非线性回归模型,用于研究因变量与影响因素之间的关系。其主要思想是根据现有数据对分类边界线建立回归公式,从而进行分类。与线性回归不同的是,logistics回归的目标是找到最佳拟合参数,以便对不同特征赋予不同的权重。实现简单,容易理解和实现计算代价不高,速度快,存储资源低。

2025-05-19 19:34:17 1036

原创 图像压缩编码

一、实验目的1、理解图像编码的概念:2、掌握霍夫曼编码技术二、实验内容:选取一段不少于3000字的英文材料,统计各字符出现的次数,实现HuMiman 编码,以及对编码结果的解码。三、实验要求:1)输出每个字符出现的次数和编码,并存储文件(Huffmnan.txt)。2)在 Huffman 编码后,英文文章编码结果保存到文件中(code.dat),编码结果必须是二进制形式,即01的信息用比特位表示,不能用字符“0 和“1表示。3)实现解码功能。

2025-05-17 20:47:35 846

原创 对已知噪声频率的含噪图像进行频域陷波滤波

呈现出中间亮、四周暗的分布,中心亮点表示图像的低频成分集中区域,低频成分主要反映图像的大致轮廓和整体灰度信息。:与原始图像频谱相比,在某些位置出现了额外的亮点或异常的频谱能量分布,这些位置对应着添加的波纹噪声的频率成分。:相比原始图像,出现了明显的波纹状干扰条纹,覆盖在樱桃和容器图像上,这些条纹就是添加的波纹噪声,使图像质量下降,细节变得模糊,影响了正常视觉效果。:图像清晰,能清楚看到樱桃的形状、表面纹理以及容器的细节等,是未经任何噪声污染和处理的初始状态,作为后续对比的基准。

2025-05-13 20:02:26 291

原创 采用顺序统计滤波器对图像进行滤波

椒盐噪声去除效果较好,相较于均值滤波,图像的细节保留得更完整,樱桃的轮廓和纹理更清晰,这是因为中值滤波用邻域像素的中值替代中心像素值,能有效剔除椒盐噪声这类脉冲噪声。最大值滤波选取邻域内的最大像素值,对于椒盐噪声中的白色噪点会起到放大作用,所以图像看起来白色噪点更明显,不适合用于去除椒盐噪声。:图像中出现了大量黑白相间的噪点,这些噪点随机分布在图像上,破坏了原始图像的清晰度,模拟了实际中可能遇到的噪声污染情况。:图像清晰,能看到樱桃的细节、轮廓以及容器的纹理等,没有噪声干扰 ,是后续处理的基础图像。

2025-05-09 15:58:39 403

原创 根据运动模型生成运动模糊图像

这是因为代码中通过生成运动模糊模型,在频域对原始图像进行处理后得到的结果,模拟了现实中运动造成的图像模糊情况。不同的灰度值表示对不同频率的衰减或增强程度,整体上体现了模糊操作在频域的特性。:呈现出特定的黑白图案,白色部分表示在模糊模型中起作用的位置。:呈现的是一幅较为清晰的图像,能看到碗里的果实细节 ,如果实的形状、果柄的分布等,图像质量较好,纹理和轮廓都比较清晰,作为后续模糊处理的基础。的计算逻辑,结合设定的模糊角度和窗口大小生成的,白色方块的排列方向对应了模糊的方向。对一幅灰度图像实现运动模糊。

2025-05-07 21:40:17 289

原创 【机器学习】朴素贝叶斯

它被称为“朴素”,是因为它假设特征之间是相互独立的,这意味着给定分类的条件下,每个特征发生的概率都是独立的。当训练集中某特征值未在某个类别中出现时,P(Xi∣Y)=0P(Xi​∣Y)=0,导致整个后验概率为0。原始估计:P("viagra"∣正常)=0/100=0P("viagra"∣正常)=0/100=0。P(X∣Y):类条件概率(类别 Y 下特征 X 出现的概率)P(Y∣X):后验概率(给定特征 X 时类别 Y 的概率)P(X):边际概率(特征 X 的边缘概率):避免零概率,保持概率总和为1。

2025-05-05 16:31:17 852

原创 从铁链到链表:C 语言实现数据结构中的动态存储

链表作为动态数据结构的代表,通过指针实现了灵活的内存管理。C 语言的指针操作虽然增加了学习难度,但能让我们更深入理解数据结构的本质。掌握链表不仅能加深对内存管理的理解,更能培养算法思维。在实际开发中,根据具体场景选择链表或数组,才能发挥最大效能。

2025-05-03 19:56:41 293

原创 减治法

【代码】 减治法。

2025-05-01 17:59:50 178

原创 蛮力法

尽管它通常不是最优解,但在某些场景下仍然非常有用。:尝试所有可能的候选解,直到找到正确的答案。蛮力法(Brute Force)是一种。的算法设计方法,它通过。

2025-04-29 20:33:41 205

原创 哈希索引技术

α = n/m (元素数/槽位数)简单直观,但指针消耗额外内存。:通常达到α=0.75时扩容。:相同输入永远产生相同输出。建议保持α < 0.7。每个槽位维护一个链表。

2025-04-26 22:32:52 254

原创 C语言指针

新地址 = 原地址 ± (n * sizeof(类型)):基类型,表示指针指向的数据类型。可以初始化为NULL(空指针)*:访问指针指向的内存内容。:指针指向的数据类型。:获取变量的内存地址。或指向有效的内存地址。

2025-04-24 19:23:13 201

原创 【机器学习】决策树

存在问题:信息增益对取值数较多的属性有所偏好,例如”编号“(一般是唯一的),这样的决策时不具有泛化能力,无法对新样本进行有效预测。一般而言,信息增益越大,则意味着使用属性a来进行划分所获得的“纯度提升”越大。有所偏好,在选择时,先从候选划分属性中找出信息增益。每次选择信息增益最大的特征作为当前节点的分裂特征。特征 A 对数据集 D 的纯度提升能力。选择信息增益最大的特征作为当前节点。IV(A) 是特征 A 的固有值。解决信息增益对多值特征的偏好问题。使用该准则,偏好取值多的特征。

2025-04-21 17:06:50 548

原创 冒泡排序算法

冒泡排序即每次相邻两个进行比较大小,如果前面大于后面,则进行交换,最终大的数会在最后。冒泡排序就像水中的气泡上浮过程,每次比较相邻元素,将较大的元素逐步"浮"到数组末尾。观察可得,每次冒泡都会确定一个数的位置,多次冒泡即完成排序。当然也可以冒小泡,原理相同。

2025-04-19 14:06:36 124

原创 九九乘法表

在一行中 * 前面的数记为i发生变化,* 后的数记为j保持不变(所以,i 即为内层,j 即为外层(外层控制行,内层控制列)。,此时外层没有发生变化,内层发生变化)接下来,考虑哪个是外层,哪个是内层。

2025-04-17 13:35:29 208

原创 程序流程结构

以上这么多流程结构控制的语句,应该怎么选择使用呢?依据是否满足条件,有选择的执行相应功能。互斥条件使用if-else而非多个if。依据条件是否满足,循环多次执行某段代码。超过5个分支考虑改用switch。将初始化、条件、更新集中在一行。先检查后执行,可能一次都不执行。程序按顺序执行,不发生跳转。把最可能成立的条件放在前面。需要精确控制循环变量的情况。先执行后检查,至少执行一次。条件可以是任何布尔表达式。读取输入直到特定值出现。至少需要执行一次的操作。

2025-04-15 18:03:08 254

原创 运算符及优先级

1 : 0(1>2成立则返回1,否则返回0)++a:a在+的后面,所以先计算表达式结果,再自增。a++:a在+的前面,所有先自增,再计算表达式结果。例如:优先级++a(单目) > a>=b(双目)小技巧:a在+前面就先自增,a在+后面就后自增。是只作用于一个操作数的运算符,例如取负(如果a和b有一个为真,则a||b为真,比较运算符返回值为0或1,表示真或假。是作用于两个操作数的运算符,如加法(什么是单目运算符和双目运算符?二者都为假时,结果为假。在大多数编程语言中,

2025-04-12 19:05:56 337

原创 数组逆置原理

数组逆置在很多后续的学习中会应用到,比如字符串逆转、判断某个数是不是回文以及线性表中的相关操作,接下来我们就来学习数组逆置的主要原理。例如,给出一个数组arr[]={1,2,3,4,5,6},需要将数组变成arr[]={6,5,4,3,2,1}这就涉及到了数组逆置。,其实就是将数组的第一个元素与最后一个元素进行交换,数组的第二个元素和倒数第一个元素进行交换……以此类推所以最重要的操作就是进行元素交换。

2025-04-10 13:40:04 197

原创 模型评估

模型评估是指在机器学习和数据挖掘等领域,对已经训练好的模型的性能进行量化分析和评价的过程。它的目的是为了了解模型的质量、准确性、可靠性等多个方面的性能,从而判断模型是否能够有效地解决实际问题,并且为模型的选择、优化和改进提供依据。

2025-04-07 19:18:01 1311

原创 二进制、八进制、十进制、十六进制的转换

0b0B。

2025-04-05 11:19:02 922

原创 数据类型与关键字

C 语言关键字有特殊意义,不能用作变量名(因为关键字相当于被编程语言所占用了,其他就不能再用)。三者的区别就是表示的范围不同,表示范围:long>short>int。二者的区别就是表示的范围不同,double能表示的小数位更多,更精确。C 语言数据类型规定了数据存储方式、大小和操作。多字符就是多个单字符,用字符串string表示。

2025-04-03 16:22:16 202

原创 基于K近邻算法的分类器的实现

k最近邻(kNN)算法是一种简单而有效的机器学习算法,常用于分类和回归问题。基本思路就是计算测试数据与样本的距离,取得距离最近的前k个数据的标签类,将其中出现次数最多的标签类作为测试数据的预测结果。对于k近邻算法有如下结论:优点:精度高、对异常值不敏感、无数据输入假定。缺点:计算复杂度高、空间复杂度高。适用数据范围:数值型和标称型。本次实验中,我们通过对kNN算法在约会网站数据上的应用进行了深入研究与实践。通过数据准备、分析和预处理等步骤,我们有效地解决了数据处理中的一些常见问题。

2025-03-24 19:03:59 622

原创 vscode和Anaconda下载安装及环境配置

Anaconda下载:官网链接:Free Download | Anaconda。在弹出的命令行查看Anaconda 版本,输入:conda --version。创建虚拟环境:conda create -n 环境名 python=版本号。此处存放地址根据自己的需求存放,建议选择内存比较大的盘存储。此电脑(右键)->属性->高级系统设置->环境变量。输入命令:conda --version。快捷键:Win+R 输入:cmd。等待配置ing,配置完成next即可。快捷键:Win+R 输入:cmd。

2025-03-10 20:00:49 1482

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除