UUV AUV 三维路径跟踪 LOS制导+滑膜控制算法 MATLAB编程实现

UUV AUV 三维路径跟踪
LOS制导+滑膜控制算法
MATLAB编程实现
六自由度MMG模型

在这里插入图片描述

以下文字及示例代码仅供参考
【CSDN 原创】UUV/AUV 六自由度三维路径跟踪 | LOS 制导 + 滑模控制(SMC) | MATLAB 全流程开源

关键词:UUV, AUV, 六自由度, MMG 模型, LOS 制导, 滑模控制, MATLAB, CasADi, 三维路径跟踪

一、方案亮点

  1. 六自由度 MMG 非线性模型
    完整保留纵荡、横荡、垂荡、横摇、纵摇、艏摇,耦合水动力、附加质量、阻尼、恢复力,可直接替换为任意公开水动力系数。
  2. LOS 三维制导
    基于“管道”思想,将三维航迹分解成水平 LOS 与垂直 LOS,实时计算期望航向角 θd、期望俯仰角 φd,实现无横滑角跟踪。
  3. 终端滑模控制
    对欠驱动 4 输入(左右主推、艏艉舵、垂舵)设计三通道滑模面:
    • 纵向速度 u → 主推
    • 水平 LOS 误差 ey → 艏舵
    • 垂直 LOS 误差 ez → 垂舵
      保证有限时间收敛、鲁棒抗流。
  4. 单脚本可跑
    仅需 MATLAB + CasADi(自动微分 + ipopt),无需 Simulink。

二、文件结构

UUV_3D_TRACK/
 ├─ main.m                % 一键运行
 ├─ uuv6dof.m             % 6-DOF MMG 动力学
 ├─ los3d.m               % 三维 LOS 制导
 ├─ smcCtrl.m             % 滑模控制器
 ├─ refPath.m             % 任意三维参考线生成(螺旋、折线等)
 ├─ plot3D.m              % 实时三维动画
 └─ README.pdf            % 公式推导 & 调参手册

三、核心公式

  1. 六自由度动力学(MMG 形式)
    [
    \boldsymbol{M}\dot{\boldsymbol{\nu}} + \boldsymbol{C}(\boldsymbol{\nu})\boldsymbol{\nu} + \boldsymbol{D}(\boldsymbol{\nu})\boldsymbol{\nu} + \boldsymbol{g}(\boldsymbol{\eta}) = \boldsymbol{\tau} + \boldsymbol{\tau}_{\text{env}}
    ]
    其中 η=[x,y,z,ϕ,θ,ψ]′,ν=[u,v,w,p,q,r]′,τ=[X,Y,Z,K,M,N]′ 由 4 台推进器映射。

  2. 三维 LOS 误差
    [
    \begin{aligned}
    e_y &= -(x-x_d)\sin\psi_p + (y-y_d)\cos\psi_p \
    e_z &= -(z-z_d)\cos\theta_p
    \end{aligned}
    ]
    期望航向角
    [
    \psi_d = \psi_p + \arctan2(-e_y, \Delta_h), \quad
    \theta_d = \theta_p + \arctan2(e_z, \Delta_v)
    ]

  3. 滑模面
    对通道 i 取
    [
    s_i = \dot{e}_i + k_i |e_i|^\alpha \text{sgn}(e_i)
    ]
    控制律
    [
    \tau_i = -K_i \text{sat}(s_i/\Phi_i) - \hat{\rho}_i \text{sgn}(s_i)
    ]
    其中 sat 为边界层函数,Φ_i 为边界层厚度。

四、关键代码

  1. 六自由度 MMG (uuv6dof.m)
function nu_dot = uuv6dof(t,nu,eta,tau,p)
% nu = [u;v;w;p;q;r], eta = [x;y;z;phi;theta;psi]
M   = p.M; C = p.C(nu); D = p.D(nu); G = p.G(eta);
nu_dot = M \ (tau - C*nu - D*nu - G);
end

在这里插入图片描述

  1. 三维 LOS (los3d.m)
function [psi_d,theta_d] = los3d(eta,eta_p,Delta)
% eta_p = [x_p;y_p;z_p;psi_p;theta_p] 为路径点
e_y = -(eta(1)-eta_p(1))*sin(eta_p(6)) + (eta(2)-eta_p(2))*cos(eta_p(6));
e_z = -(eta(3)-eta_p(3))*cos(eta_p(5));
psi_d   = eta_p(6) + atan2(-e_y,Delta(1));
theta_d = eta_p(5) + atan2(e_z, Delta(2));
end
  1. 滑模控制器 (smcCtrl.m)
function tau = smcCtrl(nu,eta,nu_d,eta_d,p)
% 仅控制 u, psi, theta
e_u = nu(1)-nu_d(1);
e_psi = wrapToPi(eta(6)-eta_d(6));
e_theta = wrapToPi(eta(5)-eta_d(5));

% 滑模面
s_u = e_u + p.ku*abs(e_u)^0.5*sign(e_u);
s_psi = wrapToPi(nu(6)) + p.kpsi*sign(e_psi)*abs(e_psi)^0.5;
s_theta = wrapToPi(nu(5)) + p.ktheta*sign(e_theta)*abs(e_theta)^0.5;

% 控制量
tau = zeros(6,1);
tau(1) = -p.ku_s*sat(s_u/p.Phi_u);
tau(5) = -p.ktheta_s*sat(s_theta/p.Phi_theta);
tau(6) = -p.kpsi_s*sat(s_psi/p.Phi_psi);
end
  1. 主脚本 (main.m)
clc; clear; close all;
addpath(genpath(pwd));

p = loadUUVparam();        % 水动力参数
eta0 = [0;0;0;0;0;0];      % 初始位姿
nu0  = zeros(6,1);         % 初始速度

% 参考轨迹(螺旋线)
tspan = 0:0.1:60;
[xr,yr,zr,psi_p,theta_p] = refPath('spiral',tspan);

% 仿真
[tout,yout] = ode45(@(t,y) closedLoop(t,y,p,tspan,xr,yr,zr,psi_p,theta_p), ...
                    tspan, [eta0;nu0]);

plot3D(tout,yout,xr,yr,zr);   % 三维动画
### 基于LOS制导和PID控制的UUV三维路径跟踪MATLAB实现 #### LOS制导算法简介 Line-of-Sight (LOS) 制导是一种常用的路径跟踪方法,尤其适用于无人水面艇(USV)和其他自主系统的路径跟随任务。该算法通过计算期望航向角来引导载体沿预设路径行驶[^2]。 #### PID控制器设计 比例积分微分(PID) 控制器用于调节UUV的速度和方向,使其精确地遵循由LOS算法生成的目标轨迹。PID控制器通过对误差信号的比例、积分和微分项进行加权求和,从而调整输出量以最小化实际位置与设定路径之间的偏差[^3]。 #### MATLAB代码示例 下面是一个简单的MATLAB脚本,展示了如何利用LOS制导结合PID控制来进行UUV三维路径跟踪: ```matlab % 初始化参数 dt = 0.1; % 时间步长 Tf = 100; % 总时间(s) time = 0:dt:Tf; % 定义初始状态 pos_UUV = [0, 0, 0]; % 起始坐标(x,y,z) vel_UUV = [0, 0, 0]; % 初始速度(vx,vy,vz) % 设定目标路径点 waypoints = [ 0, 0, -5; 10, 10, -10; 20, 0, -15]; % 创建PID对象 pid_x = pid(1, 0.1, 0.01); % X轴上的PID控制器 pid_y = pid(1, 0.1, 0.01); % Y轴上的PID控制器 pid_z = pid(1, 0.1, 0.01); % Z轴上的PID控制器 for t = time % 获取当前时刻的位置信息 pos_current = pos_UUV(:, end); % 计算下一个路径点的方向矢量 idx_next_wp = find(sum((repmat(pos_current', size(waypoints, 1), 1) - waypoints).^2, 2) >= min(sum((repmat(pos_current', size(waypoints, 1), 1) - waypoints).^2, 2)), 1, 'first'); wp_target = waypoints(idx_next_wp, :); % 使用LOS法则更新期望角度 los_angle = atan2d(wp_target(2)-pos_current(2), wp_target(1)-pos_current(1)); % 应用PID控制律修正偏移 u_x = pid_x(-cosd(los_angle)); % X方向输入力 u_y = pid_y(-sind(los_angle)); % Y方向输入力 % 对Z轴单独处理 err_z = wp_target(3) - pos_current(3); u_z = pid_z(err_z); % 更新运动学方程 vel_UUV = vel_UUV + dt * [u_x; u_y; u_z]; pos_UUV = [pos_UUV, pos_UUV(:,end)+dt*vel_UUV]; % 绘图显示实时进度 plot3(pos_UUV(1,:), pos_UUV(2,:), pos_UUV(3,:),'b-', ... waypoints(:,1), waypoints(:,2), waypoints(:,3), 'ro') xlabel('X Position'); ylabel('Y Position'); zlabel('Depth'); title(['Time:', num2str(t)]); drawnow limitrate; end ``` 此段程序实现了基本的功能框架,在具体应用时可能还需要考虑更多细节因素如传感器噪声补偿、动态响应特性调优等问题[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值