Python 数据插值:用NumPy解锁缺失数据的秘密拼图
关键词
数据插值、NumPy、线性插值、多项式插值、缺失值处理、数据平滑、数值分析
摘要
在数据分析和科学计算中,我们经常遇到离散或缺失的观测数据——比如气象站每小时记录的温度值有缺失,或者实验中只采集了稀疏的采样点。这时候,数据插值(Interpolation)就像“数据修复师”,能根据已知点推断出未知点的数值,让离散数据变成连续的“故事”。本文将以NumPy为工具,从基础概念到代码实现,逐步解析线性插值、多项式插值等核心方法,结合生活化案例和可视化对比,帮你掌握用Python解决数据缺失问题的实用技能。
一、背景介绍:为什么数据插值是“数据拼图游戏”?
1.1 现实中的数据困境
想象你有一张拍摄于黄昏的照片,画面中有几个关键位置被划痕覆盖(缺失值),或者只拍摄了几个离散的风景点(稀疏采样)。这时候,你需要根据周围的信息“猜测”被覆盖的内容,让照片恢复完整——数据插值的本质就是这样的“数据拼图”。
在科学计算中,这种需求无处不在:
- 气象预测:某站点因设备故障缺失2小时的温度数据,需要根据前后时间点的值推断;
- 图像放大:将低分辨率图片放大时,需要在像素之间插入新值,避免模糊;
- 实验数据分析:仅采集了10