AI知识图谱构建指南:企业智能决策的技术基础
一、引言 (Introduction)
钩子 (The Hook)
“为什么当客户投诉某款产品故障时,客服系统需要翻阅10个文档、咨询3个部门才能定位问题?为什么零售企业分析用户购买偏好时,明明有千万条交易数据,却仍无法解释‘为什么高收入女性更爱购买这款平价护肤品’?为什么银行风控模型在识别欺诈交易时,总会漏掉‘看似无关的多个小额转账’背后的关联风险?”
这些问题的答案,往往指向同一个核心痛点:企业的数据是“碎片化”的,而决策需要“关联化”的知识。当数据分散在Excel表格、PDF报告、CRM系统、IoT传感器中,彼此缺乏连接,就像散落的拼图——即使单个碎片清晰,也无法看到全貌。而知识图谱,正是将这些碎片拼接成“知识网络”的关键技术,让机器理解数据间的关系,最终支撑企业从“经验决策”走向“智能决策”。
定义问题/阐述背景 (The “Why”)
在数字化转型浪潮中,企业积累了海量数据(结构化的交易记录、半结构化的邮件文档、非结构化的客户反馈等),但“数据丰富,知识贫乏”的矛盾日益突出:
- 数据孤岛严重:业务系统(ERP、CRM、SCM)、文档系统、物联网设备等产生的数据各自独立,缺乏统一关联;
- 决策依赖经验:中层管理者依赖Excel报表,高层决策依赖PPT汇报,难以快速响应市场变化;