本体论驱动的人工智能:构建智能语义理解的理论基础与实践路径
元数据框架
标题:本体论驱动的人工智能:构建智能语义理解的理论基础与实践路径
关键词:本体论工程, 语义理解, 知识表示, 认知建模, 神经符号AI, 知识图谱, 语义推理
摘要:本文系统探讨了本体论与人工智能交叉领域的核心问题——如何通过本体论方法实现机器的智能语义理解。通过整合哲学本体论、计算机科学知识表示与现代AI技术,提出了一套完整的理论框架与实现路径。分析了从符号主义到连接主义的范式演进,构建了神经符号融合的语义理解架构,提供了从基础理论到工程实践的全面技术指南,并探讨了该领域面临的重大挑战与未来发展方向。
1. 概念基础
1.1 领域背景化:语义理解的AI困境
当代人工智能系统在特定任务上已展现出卓越性能,但在语义理解层面仍存在根本性局限。尽管大型语言模型(LLMs)能够生成流畅文本,却常表现出"伪理解"现象——缺乏对概念本质及其关系的真正把握。这种局限源于传统AI方法在处理语义时的根本缺陷:统计模式匹配无法替代深层概念理解。
本体论(ontology)作为研究存在本质与概念体系的哲学分支,为解决这一困境提供了理论基础。在计算机科学中,本体论被重新定义为"对共享概念模型的明确形式化规范"[Gruber, 1993],它提供了描述特定领域知识的概念框架和关系体系,使机器能够超越表层符号,把握深层语义。