1. UNet架构回顾
UNet最初由Ronneberger等人提出,专门用于生物医学图像分割。其经典结构由对称的编码器(下采样)和解码器(上采样)路径组成,中间通过跳跃连接(skip connections)将低级特征与高级特征融合。
class UNet(nn.Module):
def __init__(self, in_channels=1, num_classes=1):
super(UNet, self).__init__()
self.in_channels = in_channels
self.num_classes = num_classes
# 编码器路径(下采样)
self.in_conv = DoubleConv(in_channels, 64)
self.down1 = Down(64, 128)
self.down2 = Down(128, 256)
self.down3 = Down(256, 512)
self.down4 = Down(512, 1024)
# 解码器路径(上采样)
self.up1 = Up(1024, 512)
self.up2 = Up(512, 256)
self.up3 = Up(256, 128)
self.up4 = Up(128, 64)
self.out_conv = OutConv(64, num_clas