UNet改进(20):融合通道-空间稀疏注意力的医学图像分割模型

1. UNet架构回顾

UNet最初由Ronneberger等人提出,专门用于生物医学图像分割。其经典结构由对称的编码器(下采样)和解码器(上采样)路径组成,中间通过跳跃连接(skip connections)将低级特征与高级特征融合。

class UNet(nn.Module):
    def __init__(self, in_channels=1, num_classes=1):
        super(UNet, self).__init__()
        self.in_channels = in_channels
        self.num_classes = num_classes
        
        # 编码器路径(下采样)
        self.in_conv = DoubleConv(in_channels, 64)
        self.down1 = Down(64, 128)
        self.down2 = Down(128, 256)
        self.down3 = Down(256, 512)
        self.down4 = Down(512, 1024)
        
        # 解码器路径(上采样)
        self.up1 = Up(1024, 512)
        self.up2 = Up(512, 256)
        self.up3 = Up(256, 128)
        self.up4 = Up(128, 64)
        
        self.out_conv = OutConv(64, num_clas
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

摸鱼许可证

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值