机器学习模型代码汇总

最近许多同学(大部分是研0同学)私信学长,问怎么样能提升自己模型复现能力?

模型复现能力是后面科研创新的基础,这也是很多同学最头疼的问题。提升模型复现能力,最好的方法就是把手撕经典模型代码。

从模型的基本原理出发,搭建模型框架,书写函数功能,最终完成模型的复现。这项工作前期是很痛苦的,因此学长整理了常用的机器学习模型的手撕代码,大家主要是参考其代码思路,不需要完全照抄

当然在早期,可能你对复现没有一个概念,可以先把一些模型的代码跑一跑,后面就自己上手。

以下内容学长都已经整理好文件包了(部分文件如下图),希望能帮到每一位需要它的人

需要的同学找下面小助手免费领取

1️⃣.机器学习部分代码,模型的原理这里不进行过多介绍,主要包括求解分类,回归以及聚类三类问题的算法,具体如下:

PCA:主成分分析,用于数据降维。采用python+numpy来实现主成分分析算法

KNN:k近邻,用于解决分类问题。基于python+numpy实现了k近邻算法,并将其应用于MNIST数据集上

SVM:支持向量机,用于分类识别问题,其变体SVR可以求解回归问题。分别基于SMO和二次编程(QP)实现了SVM

Decision tree:决策树,用于求解分类和回归问题。基于python,Numpy,Matplotlib实现的ID3,C4.5和CART算法

KMeans:k均值聚类,用于求解聚类问题。基于Numpy实现,以及matplotlib进行聚类过程的可视化

Logitic regression:逻辑回归算法,用于求解二分类问题。基于PYTHON+numpy实现logic回归二分类

Adaboost:一种基于树的集成学习算法,可以求解分类和回归问题。组合多个弱学习器,形成一个强大的分类器。基于python➕numpy来实现Adaboost

Naive Bayes:朴素贝叶斯算法,可以求解分类问题。基于python+numpy来实现Naive Bayes

2️⃣.其次是深度学习部分的代码,主要包括计算机视觉和图像处理(CV),自然语言处理(NLP),强化学习(RL),时间序列分析等方面模型的代码,具体如下:

CV方向

CNN :卷积神经网络,用于处理图像问题,如图像的识别分类等,主要包括LetNet,AlexNet,EfficientNet,DenseNet等。从最早期的LetNet到现在比较先进的EfficientNet都包含在内,模型代码比较全面

GAN:GAN是2014年提出的,由生成器和判别器组成,生成器生成假的数据,判别器区分真假数据。DCGAN,Pix2Pix,CycleGAN等算法都是在GAN的基础上发展起来的

图像分割:图像分割将图像划分为多个有意义的区域或者对象,传统图像分割方法包括阈值分割,区域生长,分水岭算法等,瘆得慌学习中图像分割算法主要包括U-Net,SegNet,Mask R-CNN等。

目标检测:目标检测与追踪是物体动态追踪的关键技术,主要算法包括R-CNN,Fast R-CNN,YOLO,SSD

CV方向还有姿态估计,图像生成与增强等

Nlp方向

词嵌入:将单词映射到连续向量空间中,实现单词之间的语义关系。主要算法包括Word2Vec,GloVe,FastText等

序列到序列模型:用于处理输入序列和输出序列长度不一样的任务,由编码器和解码器组成,通常结合注意力机制算法效果会更好。

序列标注和分类:命名实体识别(NER),识别文本中的命名实体,词性标注就是给句子中每个词汇标注词性。经典的词性标注算法是Part-of-Speech Tagging,此外还有情感分析方面的应用,判断文本情感倾向

强化学习

动态规划方法:有蒙特卡洛方法和时序差分方法。蒙特卡罗方法就是通过多次试验采样估计函数或策略;时序差分方法是结合动态规划和蒙特卡洛方法的思想,逐步更新值函数

基于值函数的方法:各种方法的区别在于通过不同的策略来更新值函数。包括Q-learning,SARSA,深度Q网络DQN等方法,后两种方法都是在q学习方法基础上进行的改进。比如DQN是将q学习与深度神经网络结合,使用神经网络来近似q值函数,使得能够处理高纬状态空间的问题

基于策略的方法:梯度策略方法直接优化策略函数,使得策略梯度的期望奖励最大化;REINFORCE是基于蒙特卡洛方法的梯度策略算法;近端策略优化通过限制策略更新的幅度来稳定训练过程

时间序列分析

RNN:循环神经网络,通过隐藏状态递归更新,但存在梯度爆炸等问题,限制其在长序列中的使用

LSTM:长短期记忆网络,能够捕捉长时间依赖关系,非常适合处理时间序列数据,可用于分类和预测等任务

GRU:类似LSTM,但结构简单,计算效率更高,在中长时间序列预测中表现出显著的优势

Transformer:基于自注意力机制,无需序列递归,能够并行处理时间序列数据,适用于长序列的建模和预测

GANs:生成对抗网络,通过生成器和判别器对抗训练,生成高质量的时间序列数据,应用于数据增强,异常检测等。

混合模型:CNN-LSTM结合卷积神经网络和长短期记忆网络,先用CNN提取局部特征,在使用LSTM捕捉时间依赖关系,适合于复杂的时间序列预测任务

机器学习,深度学习以及强化学习都有很多经典算法,而且这个领域一直处于迭代更新中,需要一直保持学习才能跟上前沿

提升代码能力不是一项可以速成的任务,需要有更多的耐心需要在更多项目中积累磨炼,正所谓千锤百炼终成钢。给自己一个成长的机会吧,给自己一个证明你也可以的机会,从现在开始,提升自己的代码能力或者任何一件你觉得有意义的事情

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值