小杰数据结构(five day finally)——知人者智,自知者明。

1.树

(1)链式存储

链式存储此二叉树,从根结点开始,将各个结点以及其左右子的地址使用链表进行存储。

其左子的结点编号为2*i

右子编号为2*i+1

设完全二叉树的结点数为n,某结点的编号为i

i>1时(不是根结点时),有父节点,其编号为i//2

2*i <= n时,有左子,其编号为2*i,否则没有左子,没左子一定没右子,其本身为叶节点。

2*i+1 <= n时,有右子,其编号为2*i+1,否则就没有右子。

整体代码:

class TreeNode:
    # 二叉树的创建
    def __init__(self, data=None, left=None, right=None):
        self.data = data
        self.left = left
        self.right = right


def create_bitree(n, i):  # n = 3
    root = TreeNode(i)
    if 2 * i <= n:
        root.left = create_bitree(n, 2 * i)
    else:
        root.left = None

    if 2 * i + 1 <= n:
        root.right = create_bitree(n, 2 * i + 1)
    else:
        root.right = None

    return root


# 先序遍历——根左右
def pre_order(r):
    if r is None:
        return
    # 根
    print(r.data, end='')
    # 左
    pre_order(r.left)
    # 右
    pre_order(r.right)

    return


# 中序遍历——左根右
def in_order(r):
    if r is None:
        return
    # 左
    in_order(r.left)
    # 根
    print(r.data, end='')
    # 右
    in_order(r.right)

#后序遍历——左右根
def post_order(r):
    if r is None:
        return
    # 左
    post_order(r.left)
    # 右
    post_order(r.right)
    # 根
    print(r.data, end='')


n = 3  # 树的节点(编号从1号开始)

root = create_bitree(n, 1)
print("前序遍历:")
pre_order(root)
print("\n中序遍历:")
in_order(root)
print("\n后序遍历:")
post_order(root)
输出:
前序遍历:
123
中序遍历:
213
后序遍历:
231
Process finished with exit code 0

(2)层序遍历(后边都是了解扩展)

队列思想

2.链表

(1)双向链表

概念

  1. 逻辑结构:线性结构
  2. 物理结构:链式存储结构

步骤:

  1. 判错
  2. 创新
  3. 尾插
  4. 中间插
    1. 中间插前半段
    2. 中间插后半段
    3. 无论前半段还是后半段,伪指针指向插入位置post结点后,其插入代码都是一样的

①插入

②打印

遍历双向链表

  1. 从前往后
  2. 从后往前

③删除

整体代码

class Node:
    def __init__(self, data=None):
        self.data = data  # 数据域
        self.prior = None  # 指向前一个节点的指针
        self.next = None  # 指向下一个节点的指针


class DoubleLinkedList:
    def __init__(self):
        self.head = Node()  # 头节点,作为哑节点(不存储实际数据)
        self.tail = self.head  # 尾指针初始时指向头节点
        self.len = 0  # 当前链表的长度

    def insert(self, position, data):
        # 容错判断
        if position < 0 or position > self.len:
            print("插入位置无效!")
            return -1

        # 创建一个新的节点
        new_node = Node(data)

        # 将节点链接到链表中
        if position == self.len:  # 插入到链表尾部
            self.tail.next = new_node
            new_node.prior = self.tail
            self.tail = new_node  # 更新尾指针
        else:  # 插入到链表中间或头部
            if position < self.len // 2:  # 插入位置在前半部分,从头向后遍历
                current = self.head
                for _ in range(position + 1):
                    current = current.next
            else:  # 插入位置在后半部分,从尾向前遍历
                current = self.tail
                for _ in range(self.len - position - 1):
                    current = current.prior

            # 进行插入操作(先连前面,再连后面)
            new_node.prior = current.prior
            current.prior.next = new_node
            new_node.next = current
            current.prior = new_node

        self.len += 1  # 链表长度加1
        return 0

    # 删除双向链表指定位置的数据
    def delete(self, position):
        # 容错处理
        if position < 0 or position >= self.len:
            print("删除位置无效!")
            return -1
            # 2.对删除位置进行分析,分为两种情况
            # 如果删除的是链表最后一个节点
        if position == self.len - 1:
            # 将尾指针向前移动一个位置
            self.tail = self.tail.prior
            self.tail.next = None
        else:
            # 找到要删除的节点的前一个节点和后一个节点
            if position < self.len // 2:  # 如果位置在前半部分,从头向后遍历
                current = self.head
                for _ in range(position + 1):
                    current = current.next
            else:  # 如果位置在后半部分,从尾向前遍历
                current = self.tail
                for _ in range(self.len - position - 1):
                    current = current.prior

            # 断开链接并进行删除操作(在Python中,这会导致被删除节点被垃圾回收)
            current.prior.next = current.next
            current.next.prior = current.prior
            # 双向链表的长度减1
            self.len -= 1
            return 0

        # 判断双向链表是否为空
        def is_empty(self):
            return self.len == 0

        # 求双向链表的长度
        def length(self):
            return self.len


# 测试代码
if __name__ == "__main__":
    dll = DoubleLinkedList()
    dll.insert(0, 10)  # 在位置0插入数据10
    dll.insert(1, 20)  # 在位置1插入数据20
    dll.insert(1, 15)  # 在位置1插入数据15(应该在20之前)
    dll.insert(3, 30)  # 在位置3插入数据30

    # 打印链表内容(从头节点后的第一个节点开始,直到尾节点前的最后一个节点)
    current = dll.head.next
    while current != dll.tail.next:
        print(current.data, end=" -> ")
        current = current.next
    print("None")  # 用None表示链表末尾


(2)双向循环链表

思想和单向循环一样,只需要将双向链表尾的next和头的prior双向链接

解决约瑟夫问题

整体代码:

class Node:
    def __init__(self, data):
        self.data = data  # 节点数据
        self.prior = None  # 指向前一个节点的指针
        self.next = None  # 指向下一个节点的指针


class DoubleLinkedList:
    def __init__(self):
        self.head = None  # 链表头指针
        self.tail = None  # 链表尾指针

    def append(self, data):
        # 在链表末尾添加新节点
        new_node = Node(data)
        if not self.head:
            # 如果链表为空,则新节点既是头节点也是尾节点
            self.head = self.tail = new_node
        else:
            # 否则,将新节点添加到链表末尾
            self.tail.next = new_node
            new_node.prior = self.tail
            self.tail = new_node

    def make_circular(self):
        # 使链表形成循环
        if self.head and self.tail:
            self.tail.next = self.head
            self.head.prior = self.tail

    def josephus_problem(self, all_num, start_num, kill_num):
        # 解决约瑟夫问题
        # 填充循环双向链表
        for i in range(1, all_num + 1):
            self.append(i)
        self.make_circular()

        # 移动到起始位置
        current = self.head
        for _ in range(start_num - 1):
            current = current.next

        # 解决约瑟夫问题
        while current.next != current:  # 当链表中不止一个节点时
            # 移动到要删除的节点
            for _ in range(kill_num - 1):
                current = current.next

            # 删除当前节点
            print(f"杀死的是 ------- {current.data}")
            if current.prior:
                current.prior.next = current.next
            if current.next:
                current.next.prior = current.prior

            # 移动到删除节点后的下一个节点
            current = current.next

        # 打印最后剩下的节点(猴王)
        print(f"猴王是 {current.data}")


# 主函数
if __name__ == "__main__":
    dll = DoubleLinkedList()  # 创建双向链表实例
    all_num = int(input("请您输入猴子的总数: "))  # 输入猴子总数
    start_num = int(input("从几号猴子开始数: "))  # 输入开始数数的猴子号码
    kill_num = int(input("数到几杀死猴子: "))  # 输入数到几杀死猴子的号码
    dll.josephus_problem(all_num, start_num, kill_num)  # 解决约瑟夫问题

3.排序算法

(1)冒泡排序

(1)比较第一个数与第二个数,若为逆序a[0]>a[1],则交换;然后比较第二个数与第三个数;依次类推,直至第n-1个数和第n个数比较为止——第一趟冒泡排序,结果最大的数被安置在最后一个元素位置上

(2)对前n-1个数进行第二趟冒泡排序,结果使次大的数被安置在第n-1个元素位置

(3)重复上述过程,共经过n-1趟冒泡排序后,排序结束

def bubble_sort(arr):
    N = len(arr)
    for i in range(N - 1):
        for j in range(N - 1 - i):
            if arr[j] > arr[j + 1]:
                # 交换元素
                temp = arr[j]
                arr[j] = arr[j + 1]
                arr[j + 1] = temp

def main():
    N = 7
    a = [0] * N  # 初始化数组为0
    print("Please input array (int a[7]): ")
    # 从标准输入读取7个整数
    a = list(map(int, input().split()))[:N]  # 确保只获取前7个输入

    # 调用冒泡排序函数
    bubble_sort(a)

    # 打印排序后的数组
    for i in range(N):
        print(f"{a[i]:\t}", end="")
    print()  # 换行

if __name__ == "__main__":
    main()


C语言:
#include<stdio.h>
#define N 10
int main(int argc, const char *argv[])
{
	int st[N],i,j,temp;
	for(i = 0; i < N; i++)
	{
		scanf("%d",&st[i]);
	}
   
	for(i = 0; i < N - 1; i++)
	{
		for(j = 0; j < N - 1 - i; j++)
		{
			if(st[j] > st[j + 1]) 
			{
				temp = st[j];
				st[j] = st[j + 1];
				st[j + 1] = temp;
			}
		}
	}
	for(i = 0; i < N; i++)
	{
		printf("%d\n",st[i]);
	}
	

	return 0;
}

(2)选择排序

(1)首先通过n-1次比较,从n个数中找出最小的, 将它与第一个数交换—第一趟选择排序,结果最小的数被安置在第一个元素位置上

(2)再通过n-2次比较,从剩余的n-1个数中找出次小的记录,将它与第二个数交换—第二趟选择排序

(3)重复上述过程,共经过n-1趟排序后,排序结束

def exchange(arr, i, k):
    # 交换数组arr中索引为i和k的元素
    arr[i], arr[k] = arr[k], arr[i]

def selection_sort(arr):
    N = len(arr)
    for i in range(N - 1):
        # 假设当前元素i是最小的
        k = i
        # 在剩余未排序部分中寻找最小值
        for j in range(i + 1, N):
            if arr[j] < arr[k]:
                k = j
        # 如果找到的最小值不是当前元素i,则交换它们
        if i != k:
            exchange(arr, i, k)

def main():
    # 初始化一个长度为7的数组,这里使用随机数填充
    import random
    a = [random.randint(0, 100) for _ in range(7)]
    
    print("原始数组:")
    print(a)
    
    # 调用选择排序函数
    selection_sort(a)
    
    print("排序后的数组:")
    print(a)

if __name__ == "__main__":
    main()

C语言:
#include<stdio.h>
#define N 5
int main(int argc, const char *argv[])
{
	int st[N] = {0};
	int	i,j,temp,k;
	for(i = 0; i < N; i++)
	{
		scanf("%d",&st[i]);
	}
    for(i = 0; i < N - 1; i++)
	{   
		k = i;//开始的时候假设最小的元素的下标为i,对第一趟,开始假设的最小元素为第一个元素.
		for(j = i+1; j < N; j++)
		{
			if(st[k] > st[j])//从一组数据里面找最小的,方法:先假设一个最小的
				k = j;
		}
		if(k != i)
		{
			temp = st[i];
			st[i] = st[k];
			st[k] = temp;
		}

	}

	for(i = 0; i < N; i++)
	{
		printf("%d\n",st[i]);
	}
	
	return 0;
}

(3)插值排序

def interpolation_search(arr, target):
    low = 0
    high = len(arr) - 1
    
    while low <= high and arr[low] <= target <= arr[high]:
        # 计算插值位置(核心公式)
        # 类似于根据比例估算位置
        pos = low + ((target - arr[low]) * (high - low)) // (arr[high] - arr[low])
        
        # 检查找到的位置
        if arr[pos] == target:
            return pos
        # 如果目标值更大,在右半部分查找
        elif arr[pos] < target:
            low = pos + 1
        # 如果目标值更小,在左半部分查找
        else:
            high = pos - 1
    
    # 特殊情况:检查low位置是否为目标(当数组中只有一个元素时)
    if low <= high and arr[low] == target:
        return low
    
    # 未找到目标
    return -1


# 测试
if __name__ == "__main__":
    # 插值查找要求数组是有序的
    arr = [10, 12, 13, 16, 18, 19, 20, 21, 22, 23, 24, 33, 35, 42, 47]
    target = 18
    
    result = interpolation_search(arr, target)
    
    if result != -1:
        print(f"元素 {target} 找到,索引位置为 {result}")
    else:
        print(f"元素 {target} 未在数组中找到")
    

(4)快速排序

其实就是逐个找到单个数据的位置

def get_pivot(arr, low, high):
    pivot = arr[low]  # 选择第一个元素作为枢轴
    left = low
    right = high
    while left <= right:
        # 从右向左扫描
        while arr[right] >= pivot and left <= right:
            right -= 1
        if left <= right:
            arr[left] = arr[right]  # 将小于枢轴的元素移动到左边
            left += 1
        # 从左向右扫描
        while arr[left] <= pivot and left <= right:
            left += 1
        if left <= right:
            arr[right] = arr[left]  # 将大于枢轴的元素移动到右边
            right -= 1
    # 将枢轴放置到正确的位置
    arr[left] = pivot
    return left  # 返回枢轴的位置

def show_array(arr):
    print(" ".join(map(str, arr)))
    print()

def quick_sort(arr, low, high):
    if low < high:
        pivot_index = get_pivot(arr, low, high)
        quick_sort(arr, low, pivot_index - 1)  # 递归排序枢轴左侧
        quick_sort(arr, pivot_index + 1, high)  # 递归排序枢轴右侧

def main():
    # 初始化数组
    arr = [32, 2, 54, 6, 78, 23, 17, 76]
    print("快速排序之前:")
    show_array(arr)
    quick_sort(arr, 0, len(arr) - 1)
    print("快速排序之后:")
    show_array(arr)

if __name__ == "__main__":
    main()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值