基于Python+Django的旅游景点数据分析与推荐系统的设计实现

以下是一个基于Python+Django的旅游景点数据分析与推荐系统的技术栈、功能设计、数据库设计及系统测试的详细方案:

技术栈

  • 后端框架:Django 4.x + Django REST framework
  • 前端框架:Vue.js 3.x 或 Bootstrap 5(若需前后端分离)
  • 数据库:PostgreSQL(支持GIS扩展)或 MySQL 8.0
  • 数据分析:Pandas + NumPy + Scikit-learn
  • 地理数据处理:GeoDjango + PostGIS
  • 推荐算法:协同过滤(Surprise库)或内容推荐(TF-IDF)
  • 部署:Nginx + Gunicorn + Docker

核心功能模块

数据采集与处理
  • 通过公开API(如高德地图API)或爬虫获取景点数据
  • 数据字段包括:名称、坐标、评分、标签、开放时间、票价等
  • 使用Pandas进行数据清洗,生成结构化数据
# 示例:数据清洗代码
def clean_data(raw_df):
    df = raw_df.dropna(subset=['name', 'location'])
    df['rating'] = df['rating'].fillna(df['rating'].mean())
    return df

数据分析模块
  • 热门景点分析(评分TOP10、访问量热力图)
  • 游客画像分析(年龄/性别分布)
  • 基于时间序列的客流预测(ARIMA模型)
# 示例:热力图生成
import folium
from django.contrib.gis.db.models import PointField

def generate_heatmap():
    spots = TouristSpot.objects.all()
    m = folium.Map(location=[39.9042, 116.4074], zoom_start=12)
    heat_data = [[spot.location.y, spot.location.x] for spot in spots]
    folium.plugins.HeatMap(heat_data).add_to(m)
    return m._repr_html_()

推荐系统模块
  • 基于用户历史的协同过滤推荐
  • 基于地理位置的距离推荐(Haversine公式)
  • 混合推荐策略(结合内容和协同过滤)

$$ \text{Haversine公式}: a = \sin²(\Delta\phi/2) + \cos\phi_1⋅\cos\phi_2⋅\sin²(\Delta\lambda/2) \ c = 2⋅\atan2(\sqrt{a}, \sqrt{1-a}) \ d = R⋅c $$

用户交互功能
  • 景点多维检索(按评分/距离/标签)
  • 个性化收藏夹
  • 行程规划工具

数据库设计

-- 核心表结构
CREATE TABLE tourist_spot (
    id SERIAL PRIMARY KEY,
    name VARCHAR(100),
    location GEOGRAPHY(POINT),
    rating DECIMAL(3,1),
    tags JSONB,
    price_range INT
);

CREATE TABLE user_profile (
    user_id INT REFERENCES auth_user(id),
    pref_tags JSONB,
    search_history JSONB
);

系统测试方案

单元测试
from django.test import TestCase
from .models import TouristSpot

class SpotTestCase(TestCase):
    def setUp(self):
        TouristSpot.objects.create(name="测试景点", rating=4.5)

    def test_spot_creation(self):
        spot = TouristSpot.objects.get(name="测试景点")
        self.assertEqual(spot.rating, 4.5)

压力测试
  • 使用Locust模拟高并发场景
  • 重点测试推荐接口响应时间
  • 数据库查询性能优化(添加空间索引)
安全测试
  • OWASP ZAP扫描漏洞
  • SQL注入测试
  • CSRF令牌验证测试

部署架构

                   +-----------------+
                   |   Nginx (SSL)   |
                   +--------+--------+
                            |
                   +--------v--------+
                   |   Gunicorn      |
                   |   (Django APP)  |
                   +--------+--------+
                            |
                   +--------v--------+
                   |   PostgreSQL    |
                   |   with PostGIS  |
                   +-----------------+

该系统可实现景点数据的可视化分析、个性化推荐和智能行程规划,适合作为毕业设计或商业项目原型。完整实现需要约2-3个月开发周期。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值