以下是一个基于Python+Django的旅游景点数据分析与推荐系统的技术栈、功能设计、数据库设计及系统测试的详细方案:
技术栈
- 后端框架:Django 4.x + Django REST framework
- 前端框架:Vue.js 3.x 或 Bootstrap 5(若需前后端分离)
- 数据库:PostgreSQL(支持GIS扩展)或 MySQL 8.0
- 数据分析:Pandas + NumPy + Scikit-learn
- 地理数据处理:GeoDjango + PostGIS
- 推荐算法:协同过滤(Surprise库)或内容推荐(TF-IDF)
- 部署:Nginx + Gunicorn + Docker
核心功能模块
数据采集与处理
- 通过公开API(如高德地图API)或爬虫获取景点数据
- 数据字段包括:名称、坐标、评分、标签、开放时间、票价等
- 使用Pandas进行数据清洗,生成结构化数据
# 示例:数据清洗代码
def clean_data(raw_df):
df = raw_df.dropna(subset=['name', 'location'])
df['rating'] = df['rating'].fillna(df['rating'].mean())
return df
数据分析模块
- 热门景点分析(评分TOP10、访问量热力图)
- 游客画像分析(年龄/性别分布)
- 基于时间序列的客流预测(ARIMA模型)
# 示例:热力图生成
import folium
from django.contrib.gis.db.models import PointField
def generate_heatmap():
spots = TouristSpot.objects.all()
m = folium.Map(location=[39.9042, 116.4074], zoom_start=12)
heat_data = [[spot.location.y, spot.location.x] for spot in spots]
folium.plugins.HeatMap(heat_data).add_to(m)
return m._repr_html_()
推荐系统模块
- 基于用户历史的协同过滤推荐
- 基于地理位置的距离推荐(Haversine公式)
- 混合推荐策略(结合内容和协同过滤)
$$ \text{Haversine公式}: a = \sin²(\Delta\phi/2) + \cos\phi_1⋅\cos\phi_2⋅\sin²(\Delta\lambda/2) \ c = 2⋅\atan2(\sqrt{a}, \sqrt{1-a}) \ d = R⋅c $$
用户交互功能
- 景点多维检索(按评分/距离/标签)
- 个性化收藏夹
- 行程规划工具
数据库设计
-- 核心表结构
CREATE TABLE tourist_spot (
id SERIAL PRIMARY KEY,
name VARCHAR(100),
location GEOGRAPHY(POINT),
rating DECIMAL(3,1),
tags JSONB,
price_range INT
);
CREATE TABLE user_profile (
user_id INT REFERENCES auth_user(id),
pref_tags JSONB,
search_history JSONB
);
系统测试方案
单元测试
from django.test import TestCase
from .models import TouristSpot
class SpotTestCase(TestCase):
def setUp(self):
TouristSpot.objects.create(name="测试景点", rating=4.5)
def test_spot_creation(self):
spot = TouristSpot.objects.get(name="测试景点")
self.assertEqual(spot.rating, 4.5)
压力测试
- 使用Locust模拟高并发场景
- 重点测试推荐接口响应时间
- 数据库查询性能优化(添加空间索引)
安全测试
- OWASP ZAP扫描漏洞
- SQL注入测试
- CSRF令牌验证测试
部署架构
+-----------------+
| Nginx (SSL) |
+--------+--------+
|
+--------v--------+
| Gunicorn |
| (Django APP) |
+--------+--------+
|
+--------v--------+
| PostgreSQL |
| with PostGIS |
+-----------------+
该系统可实现景点数据的可视化分析、个性化推荐和智能行程规划,适合作为毕业设计或商业项目原型。完整实现需要约2-3个月开发周期。