【计算机科学与应用】基于物联网技术的电力物资配送实时优化决策模型

导读:

随着电力行业的快速发展和物联网技术的广泛应用,电力物资运输的实时优化决策成为提高物流效率、降低运输成本的关键问题。本文提出了一种基于物联网技术的电力物资运输实时优化决策模型。该模型利用信息物理系统(CPS)和物联网技术,通过车载GPS、RFID物资标签、路侧传感器、交通摄像头以及气象API等多种感知设备,实时采集客户订单、车辆位置、物资状态、道路实时交通流速度、事故信息、施工路段位置和精确的天气数据(如降雨量、风速、能见度),构建了融合多源异构数据的动态运输环境感知层。数据通过MQTT协议传输至云端CPS平台,进行清洗、融合(如将GPS坐标与高德地图的路网匹配,将天气信息关联到具体路段),并转化为模型可用的参数(如路段通行时间、事故导致的道路封闭状态、天气影响因子)。在此基础上,建立了配送路径优化模型,提出了一种改进的大邻域搜索算法,以提高算法的收敛速度和优化效果。实验结果表明,所提出的模型和算法能够有效提高物流配送效率,降低运输成本,相较于传统静态规划方法,总行驶里程平均降低13.3%,车辆使用数量减少25%,载重利用率提升21.1%,动态事件响应时间缩短至5分钟内,为电力物资运输的智能化管理提供了理论支持和借鉴。

作者信息:

虞振凌葛长宏费 冬胡承鑫:国网上海市电力公司物资公司,上海;肖 锋:上海久隆企业管理咨询有限公司,上海

正文

 本文旨在提出一种基于物联网技术的电力物资运输实时优化决策模型。该模型通过集成实时数据,应用改进的智能优化算法,实现配送车辆的动态路径优化。研究的主要贡献包括:1) 构建了基于物联网技术的电力物资运输实时数据采集、处理与融合的系统框架,明确了多源数据到模型参数的转化机制;2) 提出了一种改进的大邻域搜索算法,结合模拟退火和变邻域搜索策略,提高了算法的性能;3) 通过实验验证了所提出模型和算法的有效性,并量化了物联网实时数据驱动优化带来的具体效益。

1. 基于物联网技术的实时数据采集与处理系统

本模型的核心驱动力是物联网技术构建的实时动态数据环境。其工作流程如下:

1) 数据采集层:

客户订单与需求:通过企业资源计划(ERP)或物资管理信息系统实时获取,包含物资类型、数量、需求点位置、期望/最迟到达时间窗。

车辆位置与状态:配送车辆配备GPS定位模块和车载诊断系统(OBD),实时上报经纬度坐标、行驶速度、方向、车辆状态(空载/满载)。

物资状态:关键物资(如精密设备、易损件)加装RFID或传感器,监控温湿度、震动等状态信息(虽未直接影响路径,但可用于异常预警)。

道路状况与交通流量:集成高德地图等商业地图API提供的实时交通流数据(颜色编码的拥堵指数、预计通行时间);接入交通管理部门的路侧传感器(线圈、摄像头)数据或公开的事故/施工信息平台,获取精确的事故点位、施工路段位置及预计持续时间。

天气状况:接入中国气象局或商业气象服务商(如彩云天气)的API,获取配送区域内的精细化、短临天气预报,特别是影响交通的强降水、大雾、大风、冰雪等天气现象及其强度、影响范围和持续时间。

2) 数据传输层:采用混合通信方式。车辆GPS/OBD、路侧传感器数据通常通过4G/5G蜂窝网络传输。RFID数据在仓库/集散点通过WiFi/局域网读取。所有数据最终通过MQTT、HTTP等协议汇聚至云端或边缘计算中心。

3) 数据处理与融合层(CPS平台核心):

数据清洗:剔除异常值、缺失值填充或标记。

地图匹配:将离散的车辆GPS点匹配到实际路网拓扑结构上。

路况计算:基于实时交通流数据、历史平均速度、上报的事故/施工信息,动态计算路网中每条路段(arc)的实时通行时间。

天气影响评估:建立规则库或轻量级ML模型,评估特定天气对路段通行能力的影响(如:大雨导致速度下降20%,大雾导致速度下降30%且风险成本增加)。生成天气影响因子wij(t) 。

事件处理:识别重大事件(如突发严重事故、道路塌方),将其影响路段标记为“临时不可通行”(cij(t)=M ,M为大数),或显著增加通行时间/成本。

数据聚合与发布:将处理后的动态路网信息(实时成本矩阵、不可通行路段列表)和更新的需求信息,封装为优化模型可识别的输入参数,供决策模型调用。更新频率可根据场景设定(如1~5分钟)。

4) 决策应用层:

优化模型基于处理后的动态数据(cijeffective(t) ,不可通行路段)和当前系统状态(车辆位置、剩余载重),进行路径的初始规划或动态重规划。

2. 基于改进的大邻域搜索算法求解

VNS-LNS算法框架如下:

3.算例分析 

 本算例通过4个仓库对上海市28个客户点进行配送,基于“LNS + VNS for MDVRP”算法进行求解,应用Python Django框架、高德地图API实现。

通过调用“LNS + VNS for MDVRP”算法,迭代60次(如图1所示)求解出了最优结果,最优化结果如下。

优化后的运输路径规划如图2所示,总运输里程为303.85公里。在实施本优化方案之前,随机进行了一次路径规划,总行驶里程约350.50公里。更重要的是,在模拟的动态事件(事故、天气)场景下,基于物联网实时优化的方案相比静态最优方案(基于初始路况规划后不再调整),平均减少因突发事件导致的延误达70%,动态重规划响应时间控制在5分钟以内(包含数据获取、处理、模型求解时间)。两种方案对比结果如表1所示。 

 

4.结论

本算例验证了改进VNS-LNS算法在电力物资配送中的有效性,算法在载重、里程、车辆数量约束下表现出强鲁棒性。通过地图可视化与敏感性分析,证明了模型的实际应用潜力。同时实验结果表明,物联网技术支撑的实时数据采集、智能化处理和驱动决策直接贡献了13.3%的里程节省、25%的车辆减少、83.3%的动态响应速度提升以及70%的事件延误降低。未来工作可进一步集成实时交通数据,加强大数据技术的应用,提高数据处理能力和实时性;并扩展至多目标优化(如碳排放最小化),以应对复杂动态环境。其次,进一步探索人工智能和机器学习在物流决策和路径优化中的应用,提高系统的预测精度和自适应能力;最后,考虑更多现实约束和不确定性因素,如天气变化、突发事件等,提高算法的鲁棒性。 

基金项目:

国网上海市电力公司科技项目《CPS技术在电力物流网络规划及运输路径优化中的应用研究》(项目编码:52090E240003)

更多详细内容请点击原文链接:https://doi.org/10.12677/csa.2025.157188

如需投稿欢迎私信小编~ 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值