💖💖作者:计算机毕业设计小途
💙💙个人简介:曾长期从事计算机专业培训教学,本人也热爱上课教学,语言擅长Java、微信小程序、Python、Golang、安卓Android等,开发项目包括大数据、深度学习、网站、小程序、安卓、算法。平常会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。平常喜欢分享一些自己开发中遇到的问题的解决办法,也喜欢交流技术,大家有技术代码这一块的问题可以问我!
💛💛想说的话:感谢大家的关注与支持!
💜💜
网站实战项目
安卓/小程序实战项目
大数据实战项目
深度学习实战项目
目录
人体生理指标管理数据可视化分析系统介绍
《基于大数据的人体生理指标管理数据可视化分析系统》是一款专为人体健康监测与数据分析设计的创新系统。它利用强大的大数据处理框架 Hadoop 和 Spark,能够高效地处理海量的人体生理指标数据,如心率、血压、血糖等。系统采用 Python 和 Java 两种开发语言,支持 Django 和 Spring Boot 两种后端框架,前端则集成了 Vue、ElementUI、Echarts 等先进技术,为用户提供流畅的交互体验。
该系统具备丰富的功能模块,包括系统首页、个人中心、基础生理指标分析、健康状况评估、生活方式分析等。用户可以方便地管理自己的生理指标数据,系统会根据这些数据进行综合健康评估,并提供针对性的生活方式建议。此外,系统还设有数据看板,通过直观的图表展示用户的健康数据趋势,帮助用户更好地了解自己的身体状况。无论是对个人健康管理感兴趣的学生,还是需要进行相关数据分析的科研人员,这个系统都能提供强大的支持和便捷的操作体验。
人体生理指标管理数据可视化分析系统演示视频
用Hadoop+Spark就能做毕设?《基于大数据的人体生理指标管理数据可视化分析系统》打破常规
人体生理指标管理数据可视化分析系统演示图片
人体生理指标管理数据可视化分析系统代码展示
from pyspark.sql import SparkSession
from pyspark.sql.functions import col, avg, stddev, count, sum, mean, lit
from pyspark.sql.types import StructType, StructField, StringType, DoubleType, IntegerType, DateType
# 初始化 SparkSession
spark = SparkSession.builder.appName("PhysiologicalDataManagement").getOrCreate()
# 假设数据已经加载到 DataFrame 中
# 例如:df = spark.read.csv("path_to_data.csv", header=True, inferSchema=True)
# 为了示例,我们直接定义一个示例 DataFrame 的 schema
schema = StructType([
StructField("user_id", StringType(), True),
StructField("date", DateType(), True),
StructField("heart_rate", DoubleType(), True),
StructField("blood_pressure", DoubleType(), True),
StructField("glucose_level", DoubleType(), True),
StructField("sleep_hours", DoubleType(), True),
StructField("steps", IntegerType(), True)
])
# 示例数据
data = [
("user1", "2026-01-01", 72.0, 120.0, 85.0, 7.5, 5000),
("user1", "2026-01-02", 75.0, 125.0, 87.0, 8.0, 6000),
("user2", "2026-01-01", 70.0, 115.0, 80.0, 7.0, 4500),
("user2", "2026-01-02", 73.0, 120.0, 82.0, 7.5, 5500)
]
# 创建 DataFrame
df = spark.createDataFrame(data, schema)
# 核心功能 1:基础生理指标分析
# 计算每个用户的心率、血压和血糖的平均值、标准差
def analyze_basic_indicators(df):
result = df.groupBy("user_id").agg(
avg(col("heart_rate")).alias("avg_heart_rate"),
stddev(col("heart_rate")).alias("std_heart_rate"),
avg(col("blood_pressure")).alias("avg_blood_pressure"),
stddev(col("blood_pressure")).alias("std_blood_pressure"),
avg(col("glucose_level")).alias("avg_glucose_level"),
stddev(col("glucose_level")).alias("std_glucose_level")
)
return result
# 核心功能 2:健康状况分析
# 根据生理指标评估用户的健康状况
def analyze_health_status(df):
df = df.withColumn("health_status",
when((col("heart_rate") > 100) | (col("blood_pressure") > 140) | (col("glucose_level") > 120), "Unhealthy")
.otherwise("Healthy"))
result = df.groupBy("user_id", "health_status").agg(count(lit(1)).alias("status_count"))
return result
# 核心功能 3:综合健康评估
# 综合考虑多个生理指标和生活方式因素,给出综合健康评分
def comprehensive_health_assessment(df):
df = df.withColumn("health_score",
(col("heart_rate") * 0.2 + col("blood_pressure") * 0.3 + col("glucose_level") * 0.2 +
col("sleep_hours") * 0.1 + col("steps") * 0.2).cast("double"))
result = df.groupBy("user_id").agg(avg(col("health_score")).alias("avg_health_score"))
return result
# 执行核心功能
basic_indicators_result = analyze_basic_indicators(df)
health_status_result = analyze_health_status(df)
comprehensive_health_assessment_result = comprehensive_health_assessment(df)
# 显示结果
basic_indicators_result.show()
health_status_result.show()
comprehensive_health_assessment_result.show()
# 停止 SparkSession
spark.stop()
人体生理指标管理数据可视化分析 系统文档展示
💖💖作者:计算机毕业设计小途
💙💙个人简介:曾长期从事计算机专业培训教学,本人也热爱上课教学,语言擅长Java、微信小程序、Python、Golang、安卓Android等,开发项目包括大数据、深度学习、网站、小程序、安卓、算法。平常会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。平常喜欢分享一些自己开发中遇到的问题的解决办法,也喜欢交流技术,大家有技术代码这一块的问题可以问我!
💛💛想说的话:感谢大家的关注与支持!
💜💜
网站实战项目
安卓/小程序实战项目
大数据实战项目
深度学习实战项目