多线程编程是提高程序并发性能的常用技术。Python 提供了 threading
模块支持多线程操作,但由于全局解释器锁(GIL)的存在,线程安全问题尤为重要。本文将介绍 Python 多线程基础知识及常见的线程安全问题及解决方案。
一、线程基础
线程是操作系统能够进行运算调度的最小单位。Python 中可以通过 threading.Thread
创建线程。
python
复制编辑
import threading def worker(num): print(f"线程 {num} 正在运行") threads = [] for i in range(5): t = threading.Thread(target=worker, args=(i,)) threads.append(t) t.start() for t in threads: t.join()
二、全局解释器锁(GIL)
Python 的 GIL 保证同一时刻只有一个线程执行 Python 字节码,这使得多线程在 CPU 密集型任务中效果不佳,但在 I/O 密集型任务中仍能提升性能。
三、线程安全问题
多个线程访问和修改共享数据时,可能引发数据竞争,导致数据不一致。
python
复制编辑
count = 0 def add(): global count for _ in range(100000): count += 1 t1 = threading.Thread(target=add) t2 = threading.Thread(target=add) t1.start() t2.start() t1.join() t2.join() print(count) # 结果可能小于预期的200000
四、锁机制解决线程安全
使用 threading.Lock
来保护共享资源,避免竞争。
python
复制编辑
lock = threading.Lock() count = 0 def add(): global count for _ in range(100000): with lock: count += 1 t1 = threading.Thread(target=add) t2 = threading.Thread(target=add) t1.start() t2.start() t1.join() t2.join() print(count) # 结果为200000
五、其他同步机制
-
RLock:可重入锁,允许同一线程多次获取锁
-
Semaphore:限制同时访问资源的线程数量
-
Event、Condition:线程间通信和同步
六、线程池(ThreadPoolExecutor)
Python 3 提供高层线程池接口,方便管理线程:
python
复制编辑
from concurrent.futures import ThreadPoolExecutor def task(n): print(f"任务 {n} 执行") with ThreadPoolExecutor(max_workers=3) as executor: for i in range(5): executor.submit(task, i)
七、总结
Python 多线程适合 I/O 密集型场景,但要注意线程安全。使用锁机制合理同步共享资源,是保证数据正确性的关键。
https://bibg.wang
https://www.bibg.wang
https://shuaba.wang
https://www.shuaba.wang
https://jianju.wang
https://www.jianju.wang
https://youma.wang
https://www.youma.wang
https://8956.wang
https://www.8956.wang