在模型优化过程中,我们常遇到训练后期收敛停滞的问题。
传统Adagrad算法虽能自适应调整学习率,但其梯度平方累加机制会导致学习率单调衰减,后期更新步长趋近于零。
RMSprop的革新之处,正是解决了这一核心痛点。
一、Adagrad的局限与突破方向
-
关键矛盾:Adagrad累计历史梯度平方和,使学习率持续下降。当模型接近最优解时,微小的更新步长难以突破局部震荡。
-
改进思路:引入指数加权移动平均(EMA),让近期梯度获得更高权重,避免历史数据过度抑制当前学习率。
二、RMSprop的核心推导(附物理意义解析)
算法公式演进:
-
Adagrad基础形式:
θt+1=θt−Gt+ϵη⋅gt
(Gt为梯度平方累加和,易致分母持续增大)
-
RMSprop的EMA改造:
E[g2]t=γE[g2]t−1+(1−γ)gt2
设计精妙处:
-
γ(通常取0.9)控制历史梯度衰减速率
-
当γ=0.9时,10步前的梯度权重降至(0.9)10≈0.35,有效弱化陈旧数据影响
-
-
参数更新规则:
θt+1=θt−E[g2]t+ϵη⋅gt
物理本质:分母为近期梯度均方根(RMS),实时反映波动强度。
-
梯度震荡大 → 分母增大 → 自动缩减步长
-
梯度平稳时 → 分母减小 → 增大有效学习率
-
三、工程实践价值
经大量实验验证,RMSprop在以下场景表现突出:
✅ RNN/LSTM时序模型训练
✅ 损失曲面存在大量鞍点的任务
✅ 需平衡震荡与收敛速度的场景
深度优化实战建议
若想系统性掌握优化算法调参技巧,推荐结合理论推导与代码实践。笔者参与的专栏《深度学习优化精讲》包含:
-
10+优化算法可视化对比
-
自适应学习率代码逐行解析
-
梯度震荡/消失问题解决方案
课程:https://pan.quark.cn/s/412856197395
讲个故事:
哥伦布发现美洲后,许多人认为哥伦布只不过是凑巧看到,其他任何人只要有他的运气,都可以做到。
于是,在一个盛大的宴会上,一位贵族向他发难道:“哥伦布先生,我们谁都知道,美洲就在那儿,你不过是凑巧先上去了呗!如果是我们去也会发现的。”
面对责难,哥伦布不慌不乱,他灵机一动,拿起了桌上一个鸡蛋,对大家说:“诸位先生女士们,你们谁能够把鸡蛋立在桌子上?请问你们谁能做到呢?”
大家跃跃欲试,却一个个败下阵来。哥伦布微微一笑,拿起鸡蛋,在桌上轻轻一磕,就把鸡蛋立在那儿。
哥伦布随后说:“是的,就这么简单。发现美洲确实不难,就像立起这个鸡蛋一样容易。但是,诸位,在我没有立起它之前,你们谁又做到了呢?”
创新从本质上是一种对新思想、新角度、新变化采取的欢迎态度,它也表现为看问题的新角度。很多时候,人们会说,“这也算是创新吗?原来我也知道啊!”创新就这么简单,关键在于你敢不敢想,肯不肯做。