零基础也能搞定大数据毕设:存量房网上签约月统计信息可视化分析系统详细教程

💖💖作者:计算机毕业设计小明哥
💙💙个人简介:曾长期从事计算机专业培训教学,本人也热爱上课教学,语言擅长Java、微信小程序、Python、Golang、安卓Android等,开发项目包括大数据、深度学习、网站、小程序、安卓、算法。平常会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。平常喜欢分享一些自己开发中遇到的问题的解决办法,也喜欢交流技术,大家有技术代码这一块的问题可以问我!
💛💛想说的话:感谢大家的关注与支持!
💜💜
大数据实战项目
网站实战项目
安卓/小程序实战项目
深度学习实战项目

💕💕文末获取源码

存量房网上签约月统计信息可视化分析系统-系统功能

《基于大数据的存量房网上签约月统计信息可视化分析系统》是一套运用现代大数据技术深度挖掘房地产市场交易规律的综合性分析平台。该系统以Hadoop分布式存储架构为底层基础,结合Spark大数据处理引擎的强大计算能力,对北京地区存量房网上签约的海量历史数据进行高效处理与深度分析。系统采用Python语言开发,基于Django Web框架构建后端服务架构,前端运用Vue.js配合ElementUI组件库和Echarts可视化图表库,实现了直观友好的数据展示界面。在数据处理层面,系统充分利用Spark SQL进行结构化数据查询,结合Pandas和NumPy进行数据清洗与统计分析,将原始的房源发布、签约、退房等交易数据转化为有价值的商业洞察。系统核心功能涵盖四大分析维度:市场宏观趋势与周期性分析模块深度剖析月度房源发布量、签约量、退房量的变化趋势,揭示市场供需关系的动态平衡;房地产经纪机构市场格局分析模块通过机构排名、市场份额分布、梯队结构划分,全面描绘行业竞争态势;经纪机构经营效益与质量分析模块运用签约转化率、退房率等关键指标,量化评估各机构的运营效率和服务质量;市场结构与风险诊断模块采用HHI集中度指数、帕累托效应验证等专业统计方法,对市场健康度进行科学诊断,为决策者提供数据驱动的战略参考依据。

存量房网上签约月统计信息可视化分析系统-技术选型

大数据框架:Hadoop+Spark(本次没用Hive,支持定制)
开发语言:Python+Java(两个版本都支持)
后端框架:Django+Spring Boot(Spring+SpringMVC+Mybatis)(两个版本都支持)
前端:Vue+ElementUI+Echarts+HTML+CSS+JavaScript+jQuery
详细技术点:Hadoop、HDFS、Spark、Spark SQL、Pandas、NumPy
数据库:MySQL

存量房网上签约月统计信息可视化分析系统-背景意义

选题背景
近年来,中国房地产市场进入存量时代,二手房交易在房地产市场中占据越来越重要的地位。根据国家统计局数据显示,2023年全国二手住宅成交面积占住宅总成交面积的比重已超过60%,其中一线城市这一比例更是高达80%以上。作为全国房地产市场的风向标,北京存量房市场交易活跃度直接反映着全国房地产市场的健康状况。然而,传统的房地产数据分析方式往往停留在简单的统计汇总层面,无法深入挖掘海量交易数据背后的市场规律和商业价值。随着房地产经纪机构数量的快速增长和市场竞争的日趋激烈,如何通过数据分析准确把握市场趋势、评估机构经营效益、识别潜在风险,成为行业管理者和决策者面临的重要课题。传统的人工统计和简单报表已经无法满足对复杂多维数据进行深度分析的需求,迫切需要运用大数据技术构建智能化的分析系统,为房地产市场的科学决策提供有力支撑。
选题意义
本课题具有重要的理论价值和实际应用意义。从理论角度来看,该系统将大数据处理技术与房地产市场分析相结合,探索了Hadoop分布式存储和Spark计算引擎在房地产领域的创新应用模式,为相关学科的交叉融合提供了新的研究思路和技术路径。从实际应用价值来看,该系统能够为房地产监管部门提供全面准确的市场监测工具,帮助政策制定者及时掌握市场动态,制定更加科学合理的调控政策。对于房地产经纪机构而言,系统提供的市场格局分析和经营效益评估功能,能够帮助企业准确定位自身在市场中的地位,优化经营策略,提升服务质量和竞争优势。对于普通消费者来说,透明化的市场数据分析结果有助于其做出更加明智的购房决策。同时,该系统的建设也为其他城市的房地产市场分析提供了可复制的技术方案和实施经验,具有较强的推广应用价值。通过运用现代大数据技术手段,该系统有效提升了房地产市场数据分析的效率和精度,为推动房地产行业的数字化转型和高质量发展贡献了技术力量。

存量房网上签约月统计信息可视化分析系统-演示视频

零基础也能搞定大数据毕设:存量房网上签约月统计信息可视化分析系统详细教程

存量房网上签约月统计信息可视化分析系统-演示图片

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

存量房网上签约月统计信息可视化分析系统-代码展示

def analyze_monthly_market_trends(request):
   # 获取存量房签约数据,按月份分组统计
   monthly_data = []
   raw_data = HouseSigningRecord.objects.all().order_by('统计时间')
   data_by_month = {}
   for record in raw_data:
       month_key = record.统计时间.strftime('%Y-%m')
       if month_key not in data_by_month:
           data_by_month[month_key] = {
               'total_published': 0,
               'total_signed': 0,
               'total_cancelled': 0,
               'active_agencies': set()
           }
       data_by_month[month_key]['total_published'] += record.发布套数
       data_by_month[month_key]['total_signed'] += record.签约套数
       data_by_month[month_key]['total_cancelled'] += record.退房套数
       if record.签约套数 > 0:
           data_by_month[month_key]['active_agencies'].add(record.房地产经纪机构名称)
   
   for month, stats in data_by_month.items():
       net_signing = stats['total_signed'] - stats['total_cancelled']
       monthly_data.append({
           'month': month,
           'published_count': stats['total_published'],
           'signed_count': stats['total_signed'],
           'cancelled_count': stats['total_cancelled'],
           'net_signed_count': net_signing,
           'active_agencies_count': len(stats['active_agencies']),
           'signing_rate': round(stats['total_signed'] / stats['total_published'] * 100, 2) if stats['total_published'] > 0 else 0
       })
   
   # 计算月度波动性分析
   net_signing_values = [item['net_signed_count'] for item in monthly_data]
   if len(net_signing_values) > 1:
       avg_net_signing = sum(net_signing_values) / len(net_signing_values)
       variance = sum([(x - avg_net_signing) ** 2 for x in net_signing_values]) / len(net_signing_values)
       std_deviation = variance ** 0.5
       volatility_coefficient = std_deviation / avg_net_signing if avg_net_signing > 0 else 0
   else:
       volatility_coefficient = 0
   
   # 识别趋势方向
   trend_direction = "稳定"
   if len(monthly_data) >= 3:
       recent_three = monthly_data[-3:]
       if all(recent_three[i]['net_signed_count'] > recent_three[i-1]['net_signed_count'] for i in range(1, 3)):
           trend_direction = "上升"
       elif all(recent_three[i]['net_signed_count'] < recent_three[i-1]['net_signed_count'] for i in range(1, 3)):
           trend_direction = "下降"
   
   return JsonResponse({
       'status': 'success',
       'monthly_trends': monthly_data,
       'market_volatility': round(volatility_coefficient, 4),
       'trend_direction': trend_direction,
       'total_months': len(monthly_data)
   })

def analyze_agency_market_structure(request):
   # 计算各机构累计净签约量并排名
   agency_performance = {}
   all_records = HouseSigningRecord.objects.all()
   
   for record in all_records:
       agency_name = record.房地产经纪机构名称
       if agency_name not in agency_performance:
           agency_performance[agency_name] = {
               'total_published': 0,
               'total_signed': 0,
               'total_cancelled': 0,
               'net_signed': 0,
               'signing_rate': 0,
               'cancel_rate': 0
           }
       
       agency_performance[agency_name]['total_published'] += record.发布套数
       agency_performance[agency_name]['total_signed'] += record.签约套数
       agency_performance[agency_name]['total_cancelled'] += record.退房套数
       agency_performance[agency_name]['net_signed'] = (
           agency_performance[agency_name]['total_signed'] - 
           agency_performance[agency_name]['total_cancelled']
       )
   
   # 计算转化率和退房率
   for agency_name, stats in agency_performance.items():
       if stats['total_published'] > 0:
           stats['signing_rate'] = round(stats['total_signed'] / stats['total_published'] * 100, 2)
       if stats['total_signed'] > 0:
           stats['cancel_rate'] = round(stats['total_cancelled'] / stats['total_signed'] * 100, 2)
   
   # 按净签约量排序
   sorted_agencies = sorted(agency_performance.items(), key=lambda x: x[1]['net_signed'], reverse=True)
   top_20_agencies = sorted_agencies[:20]
   
   # 计算市场集中度(HHI指数)
   total_market_volume = sum([stats['net_signed'] for _, stats in sorted_agencies])
   hhi_index = 0
   if total_market_volume > 0:
       for _, stats in sorted_agencies:
           market_share = stats['net_signed'] / total_market_volume
           hhi_index += market_share ** 2
   
   # 计算头部机构市场份额
   top_5_volume = sum([stats['net_signed'] for _, stats in sorted_agencies[:5]])
   top_10_volume = sum([stats['net_signed'] for _, stats in sorted_agencies[:10]])
   top_5_share = round(top_5_volume / total_market_volume * 100, 2) if total_market_volume > 0 else 0
   top_10_share = round(top_10_volume / total_market_volume * 100, 2) if total_market_volume > 0 else 0
   
   # 市场梯队分析
   tier_analysis = {
       'top_tier': {'count': min(10, len(sorted_agencies)), 'volume': top_10_volume, 'share': top_10_share},
       'middle_tier': {'count': 0, 'volume': 0, 'share': 0},
       'bottom_tier': {'count': 0, 'volume': 0, 'share': 0}
   }
   
   if len(sorted_agencies) > 10:
       middle_agencies = sorted_agencies[10:100] if len(sorted_agencies) > 100 else sorted_agencies[10:]
       middle_volume = sum([stats['net_signed'] for _, stats in middle_agencies])
       tier_analysis['middle_tier'] = {
           'count': len(middle_agencies),
           'volume': middle_volume,
           'share': round(middle_volume / total_market_volume * 100, 2) if total_market_volume > 0 else 0
       }
       
       if len(sorted_agencies) > 100:
           bottom_agencies = sorted_agencies[100:]
           bottom_volume = sum([stats['net_signed'] for _, stats in bottom_agencies])
           tier_analysis['bottom_tier'] = {
               'count': len(bottom_agencies),
               'volume': bottom_volume,
               'share': round(bottom_volume / total_market_volume * 100, 2) if total_market_volume > 0 else 0
           }
   
   # 识别市场黑马(近3个月增长率最高的机构)
   recent_months = HouseSigningRecord.objects.filter(
       统计时间__gte=timezone.now() - timezone.timedelta(days=90)
   ).order_by('统计时间')
   
   growth_analysis = {}
   for record in recent_months:
       month_key = record.统计时间.strftime('%Y-%m')
       agency = record.房地产经纪机构名称
       if agency not in growth_analysis:
           growth_analysis[agency] = {}
       if month_key not in growth_analysis[agency]:
           growth_analysis[agency][month_key] = 0
       growth_analysis[agency][month_key] += (record.签约套数 - record.退房套数)
   
   agency_growth_rates = []
   for agency, monthly_data in growth_analysis.items():
       months = sorted(monthly_data.keys())
       if len(months) >= 2:
           first_month_volume = monthly_data[months[0]]
           last_month_volume = monthly_data[months[-1]]
           if first_month_volume > 0:
               growth_rate = ((last_month_volume - first_month_volume) / first_month_volume) * 100
               agency_growth_rates.append({
                   'agency_name': agency,
                   'growth_rate': round(growth_rate, 2),
                   'first_month_volume': first_month_volume,
                   'last_month_volume': last_month_volume
               })
   
   agency_growth_rates.sort(key=lambda x: x['growth_rate'], reverse=True)
   black_horse_agencies = agency_growth_rates[:10]
   
   return JsonResponse({
       'status': 'success',
       'top_agencies': [{'name': name, **stats} for name, stats in top_20_agencies],
       'market_concentration': {
           'hhi_index': round(hhi_index, 4),
           'top_5_share': top_5_share,
           'top_10_share': top_10_share
       },
       'tier_structure': tier_analysis,
       'black_horse_agencies': black_horse_agencies,
       'total_agencies': len(sorted_agencies)
   })

def analyze_agency_efficiency_quality(request):
   # 分析各机构经营效益与服务质量
   agency_metrics = {}
   all_records = HouseSigningRecord.objects.all()
   
   for record in all_records:
       agency_name = record.房地产经纪机构名称
       if agency_name not in agency_metrics:
           agency_metrics[agency_name] = {
               'total_published': 0,
               'total_signed': 0,
               'total_cancelled': 0,
               'conversion_rate': 0,
               'cancel_rate': 0,
               'efficiency_score': 0,
               'quality_score': 0
           }
       
       agency_metrics[agency_name]['total_published'] += record.发布套数
       agency_metrics[agency_name]['total_signed'] += record.签约套数
       agency_metrics[agency_name]['total_cancelled'] += record.退房套数
   
   # 计算转化率、退房率等关键指标
   high_conversion_agencies = []
   low_cancel_agencies = []
   quadrant_agencies = {'star': [], 'bull': [], 'stable': [], 'problem': []}
   
   for agency_name, metrics in agency_metrics.items():
       if metrics['total_published'] > 0:
           metrics['conversion_rate'] = metrics['total_signed'] / metrics['total_published']
       if metrics['total_signed'] > 0:
           metrics['cancel_rate'] = metrics['total_cancelled'] / metrics['total_signed']
       
       # 计算效率分数(转化率权重0.7,低退房率权重0.3)
       efficiency_component = metrics['conversion_rate'] * 0.7
       quality_component = (1 - metrics['cancel_rate']) * 0.3
       metrics['efficiency_score'] = round((efficiency_component + quality_component) * 100, 2)
       
       # 只统计有一定业务量的机构(至少发布10套房源)
       if metrics['total_published'] >= 10:
           high_conversion_agencies.append({
               'agency_name': agency_name,
               'conversion_rate': round(metrics['conversion_rate'] * 100, 2),
               'total_published': metrics['total_published'],
               'total_signed': metrics['total_signed']
           })
           
           low_cancel_agencies.append({
               'agency_name': agency_name,
               'cancel_rate': round(metrics['cancel_rate'] * 100, 2),
               'total_signed': metrics['total_signed'],
               'total_cancelled': metrics['total_cancelled']
           })
           
           # 四象限分类(以平均值为分界线)
           avg_conversion = 0.3  # 假设行业平均转化率为30%
           avg_cancel = 0.15     # 假设行业平均退房率为15%
           
           if metrics['conversion_rate'] > avg_conversion and metrics['cancel_rate'] < avg_cancel:
               quadrant_agencies['star'].append({
                   'agency_name': agency_name,
                   'conversion_rate': round(metrics['conversion_rate'] * 100, 2),
                   'cancel_rate': round(metrics['cancel_rate'] * 100, 2),
                   'category': '明星机构'
               })
           elif metrics['conversion_rate'] > avg_conversion and metrics['cancel_rate'] >= avg_cancel:
               quadrant_agencies['bull'].append({
                   'agency_name': agency_name,
                   'conversion_rate': round(metrics['conversion_rate'] * 100, 2),
                   'cancel_rate': round(metrics['cancel_rate'] * 100, 2),
                   'category': '激进机构'
               })
           elif metrics['conversion_rate'] <= avg_conversion and metrics['cancel_rate'] < avg_cancel:
               quadrant_agencies['stable'].append({
                   'agency_name': agency_name,
                   'conversion_rate': round(metrics['conversion_rate'] * 100, 2),
                   'cancel_rate': round(metrics['cancel_rate'] * 100, 2),
                   'category': '稳健机构'
               })
           else:
               quadrant_agencies['problem'].append({
                   'agency_name': agency_name,
                   'conversion_rate': round(metrics['conversion_rate'] * 100, 2),
                   'cancel_rate': round(metrics['cancel_rate'] * 100, 2),
                   'category': '问题机构'
               })
   
   # 排序并取前20名
   high_conversion_agencies.sort(key=lambda x: x['conversion_rate'], reverse=True)
   low_cancel_agencies.sort(key=lambda x: x['cancel_rate'])
   
   # 规模与转化率关系分析
   scale_efficiency_data = []
   for agency_name, metrics in agency_metrics.items():
       if metrics['total_published'] >= 5:  # 至少有5套房源发布的机构
           scale_efficiency_data.append({
               'agency_name': agency_name,
               'scale': metrics['total_published'],
               'conversion_rate': round(metrics['conversion_rate'] * 100, 2),
               'efficiency_score': metrics['efficiency_score']
           })
   
   # 识别零发布高签约的特殊机构
   special_agencies = []
   for record in all_records:
       if record.发布套数 == 0 and record.签约套数 > 0:
           agency_name = record.房地产经纪机构名称
           existing = next((item for item in special_agencies if item['agency_name'] == agency_name), None)
           if existing:
               existing['total_signed'] += record.签约套数
               existing['total_cancelled'] += record.退房套数
           else:
               special_agencies.append({
                   'agency_name': agency_name,
                   'total_signed': record.签约套数,
                   'total_cancelled': record.退房套数,
                   'net_signed': record.签约套数 - record.退房套数,
                   'business_model': '特殊业务模式'
               })
   
   special_agencies.sort(key=lambda x: x['net_signed'], reverse=True)
   
   return JsonResponse({
       'status': 'success',
       'high_conversion_agencies': high_conversion_agencies[:20],
       'low_cancel_agencies': low_cancel_agencies[:20],
       'quadrant_distribution': quadrant_agencies,
       'scale_efficiency_analysis': scale_efficiency_data,
       'special_agencies': special_agencies[:10],
       'total_analyzed_agencies': len([a for a in agency_metrics.keys() if agency_metrics[a]['total_published'] >= 10])
   })

存量房网上签约月统计信息可视化分析系统-结语

💕💕
大数据实战项目
网站实战项目
安卓/小程序实战项目
深度学习实战项目
💟💟如果大家有任何疑虑,欢迎在下方位置详细交流,也可以在主页联系我。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值