
大数据实战项目
文章平均质量分 95
大数据实战项目
计算机毕业设计小明哥
本人擅长Java、Python、小程序、Android、Golang、PHP、C#、爬虫、大数据(Hive、Spark、Hadoop)、大屏等相关技术。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
零基础也能搞定大数据毕设:存量房网上签约月统计信息可视化分析系统详细教程
本文介绍了一个基于大数据的存量房网上签约月统计信息可视化分析系统。该系统采用Hadoop+Spark技术架构,结合Python和Java开发,运用Django和Spring Boot框架构建后端服务,前端使用Vue+ElementUI+Echarts实现数据可视化。系统主要功能包括:市场趋势分析、机构格局分析、经营效益评估和市场风险诊断,通过深度挖掘北京存量房交易数据,为房地产监管部门、经纪机构和消费者提供决策支持。文中展示了系统架构、技术选型、应用场景和部分Python代码实现,体现了大数据技术在房地产领原创 2025-08-27 16:44:19 · 1045 阅读 · 0 评论 -
零基础也能做大数据毕设!深圳房产大数据分析系统Python+Java双版本任选
摘要: 深圳房产大数据分析系统基于Hadoop+Spark架构,整合Python/Java双版本开发,实现深圳一手房数据的多维度分析。系统采用Django/Spring Boot后端与Vue+Echarts前端,支持海量房产数据的存储、处理与可视化。核心功能包括:全市月度成交量/均价趋势分析、行政区对比、物业类型结构分析、供需关系评估及房价驱动因素挖掘。通过Spark SQL高效处理数据,为购房者、开发商及政府提供精准的市场洞察,助力决策优化。原创 2025-08-26 16:07:43 · 978 阅读 · 0 评论 -
大数据毕设零基础也能上手:Python+Django+Echarts构建城镇居民食品消费大数据可视化系统详解
【摘要】 《城镇居民食品消费大数据可视化系统》采用Hadoop+Spark大数据技术框架,结合Python+Django+Vue技术栈开发,对2015-2021年全国31个省份的食品消费数据进行多维度分析。系统包含20+分析功能,涵盖时空分布、消费结构、行为模式等维度,支持政府决策、企业营销和学术研究。技术实现上融合Spark SQL高效查询、Pandas精准计算和Echarts动态可视化,提供年度趋势分析、区域差异对比、饮食结构评估等核心功能。原创 2025-08-25 01:13:00 · 568 阅读 · 0 评论 -
大数据毕设零基础也能搞定:传染病可视化系统完整版Spark+Django实现方案
零基础也能搞定:传染病可视化系统完整版Spark+Django实现方案零基础也能搞定:传染病可视化系统完整版Spark+Django实现方案原创 2025-08-24 00:35:02 · 725 阅读 · 0 评论 -
毕设想用大数据技术却不知道怎么入手?电子游戏销量分析系统给你完整解决方案
本文介绍了一个基于大数据的全球电子游戏销量与评分数据分析系统。该系统采用Hadoop+Spark大数据框架,结合Python/Java开发语言和Django/Spring Boot后端框架,实现游戏产业数据的多维分析。系统功能包括游戏产业趋势分析、内容类型剖析、区域市场策略、发行商竞争力评估及评分销量关联性研究等五大核心模块。技术选型涵盖HDFS、Spark SQL、Pandas等大数据处理工具,前端采用Vue+Echarts实现数据可视化。原创 2025-08-22 11:57:55 · 682 阅读 · 0 评论 -
3步完成大数据毕设:Hadoop+Spark+Vue打造城市空气污染数据可视化分析平台
本文介绍了一个基于Hadoop+Spark的城市空气污染数据可视化分析系统。该系统采用Python开发,结合Django后端和Vue+ElementUI前端,实现空气污染数据的多维度分析。核心功能包括污染时空分布特征分析、污染物关联性分析、气象因素影响分析等五大模块。系统利用Spark SQL处理海量数据,通过Echarts实现可视化展示,为环保决策提供科学依据。代码示例展示了城市污染对比分析的核心逻辑,包括污染物年均浓度计算和空气质量等级统计。原创 2025-08-21 15:37:53 · 815 阅读 · 0 评论 -
大数据零基础也能做:农作物产量大数据分析与可视化系统完整开发教程免费分享
摘要: 本文介绍了一个基于大数据的农作物产量分析与可视化系统,采用Hadoop+Spark技术框架处理海量数据,结合Python(Pandas/NumPy)和Django/Vue实现前后端开发。系统通过五大核心维度(地理环境、生产措施、作物特性、气候条件及综合模式)进行深度分析,提供24项数据洞察,支持农业决策优化。技术选型涵盖HDFS、Spark SQL、MySQL等,解决传统农业数据分析的效能瓶颈问题。系统意义在于推动农业数字化转型,助力精准农业发展和政策制定,并提供实践教学价值。原创 2025-08-19 23:52:25 · 1060 阅读 · 0 评论 -
零基础也能上手大数据!基于Hadoop的华为游戏数据分析系统完整开发教程分享
华为游戏数据分析系统采用Hadoop+Spark大数据框架,结合Python和Java开发,实现华为游戏平台的多维度数据可视化分析。系统功能包括:游戏热度排行分析、分类市场占比统计、包体大小关联性研究及榜单生态分析。技术栈涵盖Django/Spring Boot后端、Vue+Echarts前端,支持海量数据处理与交互式可视化。该系统为游戏开发者提供市场洞察,帮助优化产品策略和运营决策。演示视频和图片展示了系统丰富的分析维度和直观的数据呈现效果,代码示例则体现了Spark SQL在游戏数据分析中的实际应用。原创 2025-08-18 19:38:01 · 1089 阅读 · 0 评论 -
完整源码分享!基于大数据的商店销售数据分析与可视化系统Hadoop+Spark实现
摘要: 本文介绍基于大数据的商店销售数据分析与可视化系统,采用Hadoop+Spark架构处理海量数据,结合Django+Vue技术栈实现前后端开发。系统从销售业绩、商品分析、区域门店、消费行为四个维度进行深度挖掘,支持实时数据展示与决策支持。技术方案包含Spark SQL、Pandas等工具,MySQL存储数据,提供源码与演示视频。系统可帮助零售企业优化运营,提升销售转化率,降低运营成本,推动数字化转型。原创 2025-08-15 13:47:04 · 617 阅读 · 0 评论 -
完整开源!基于Hadoop+Spark的贵州茅台股票大数据分析系统源码+技术文档
《贵州茅台股票大数据分析系统》是一套基于Hadoop+Spark架构的金融数据分析平台,集成了大数据处理与可视化技术。系统采用Python/Java双后端(Django/Spring Boot)和Vue前端,通过HDFS存储、Spark计算引擎处理海量股票数据,实现了五大核心功能模块:价格趋势分析(均线/区间分布)、交易量研究、波动性评估、技术指标验证等。该系统创新性地将大数据技术应用于金融分析领域,为投资者提供科学决策依据,同时具备教学示范价值,展示了分布式计算在证券分析中的实践应用。原创 2025-08-14 21:27:58 · 879 阅读 · 0 评论 -
想知道如何用大数据技术做毕设吗?懂车帝二手车分析系统详细教程来了
摘要:懂车帝二手车分析系统是一个基于Hadoop+Spark的大数据平台,采用Python+Java双语言开发,结合Django/Spring Boot后端与Vue前端。系统通过多维分析(市场特征、价值因素、品牌竞争力、K-Means聚类)处理海量二手车数据,提供车龄分布、保值率评估等深度洞察。技术栈包含HDFS分布式存储、Spark SQL查询及MySQL数据库,支持消费者购车决策和经销商精准定价。项目展示了大数据在汽车行业的应用价值,提供完整的技术实现方案和可视化分析结果。原创 2025-08-13 23:09:49 · 977 阅读 · 0 评论 -
零基础也能做大数据毕设!北京气象站数据可视化系统:Python+Django+Spark详细教程
北京气象站数据可视化系统是一个基于大数据技术的分析平台,整合Hadoop、Spark、Python等技术栈,实现对北京地区气象数据的深度挖掘与可视化展示。系统采用Django+Spring Boot后端框架,结合Vue+ElementUI前端技术,通过ECharts呈现多维分析结果。核心功能包括气象时间序列分析、极端天气事件统计、地理空间分布可视化及多变量关联分析,为气候研究、城市规划等提供数据支持。原创 2025-08-13 10:15:05 · 781 阅读 · 0 评论 -
大数据毕设怎么做?Hadoop+Spark带你解锁就业因素分析系统
本文介绍了一个基于大数据的大学生就业因素分析系统。该系统采用Hadoop+Spark技术架构,结合Python/Java开发,运用Vue+ElementUI前端展示,通过多维度数据分析学生就业影响因素。系统功能包括CGPA分数段就业率分析、实习经验关联性评估等模块,采用分布式计算处理海量数据,并实现可视化展示。演示视频和截图展示了系统界面及分析结果,代码示例演示了CGPA就业率分析的具体实现。该系统为高校就业指导提供数据支持,帮助优化人才培养策略,具有重要的教育实践价值和技术示范意义。原创 2025-08-08 18:56:12 · 841 阅读 · 0 评论 -
大数据毕设一步到位!Spring Boot+Hadoop就业分析系统直接开干
【技术摘要】本系统是基于Hadoop+Spark架构的大学生就业数据分析平台,采用Python/Django或Java/Spring Boot开发,整合Vue+Echarts前端可视化技术。系统通过分布式计算处理毕业生就业去向、行业分布、薪资期望等数据,运用K-means聚类和Apriori算法挖掘专业行业匹配度、学历薪资关系等深层模式。核心代码展示了Spark SQL进行毕业生去向统计和行业匹配分析的过程,包括数据聚合、比例计算、结果存储及可视化数据输出。原创 2025-08-07 22:53:29 · 523 阅读 · 0 评论 -
10分钟掌握Hadoop+Spark框架:基于大数据的超市销售数据统计分析系统毕设详解
文章摘要: 《基于大数据的超市销售数据统计分析系统》采用Hadoop+Spark大数据框架,结合Python/Java双语言开发,实现超市销售数据的多维度智能分析。系统通过Django/Spring Boot后端和Vue+Echarts前端构建,支持商品销售TOP20分析、时间趋势预测、促销效果评估、顾客行为画像及商品关联规则挖掘等核心功能。关键技术包括HDFS分布式存储、Spark SQL实时计算及Pandas数据处理,为超市提供从采购优化到精准营销的决策支持。原创 2025-08-06 23:01:22 · 574 阅读 · 0 评论 -
“你的毕业设计还没开始?用Java开发校园二手交易平台,快速上手不再难!”
校园二手交易平台系统设计与实现 摘要:本文介绍了一个基于Java+Spring Boot/Python+Django技术栈的校园二手交易平台系统。该系统采用C/S+B/S架构,支持uni-app、微信小程序及安卓端多平台访问。核心功能包括商品分类展示、用户注册登录、商品发布管理、订单处理等模块,并创新性地加入了公益栏和捐赠信息功能。系统采用MySQL数据库存储数据,通过规范化的接口设计和异常处理机制保证数据安全性和系统稳定性。原创 2025-08-06 10:06:36 · 950 阅读 · 0 评论 -
毕设无从下手?基于大数据的国内旅游景点游客数据分析系统帮你打通Hadoop与Spark技术壁垒
本文介绍了一个基于大数据的国内旅游景点游客数据分析系统,该系统采用Hadoop+Spark大数据框架,支持Python+Java双语言开发,后端可选Django/Spring Boot,前端基于Vue+ElementUI+Echarts实现可视化。系统通过多维度分析游客数据(包括画像、消费行为、满意度等),为旅游行业提供数据驱动的决策支持。技术架构整合了HDFS、Spark SQL、Pandas等大数据处理工具,并采用MySQL存储数据。系统可生成各类分析报告(如客源地TOP10、RFM用户分群等)原创 2025-08-06 00:10:44 · 880 阅读 · 0 评论 -
如何用Hadoop+Spark构建一个完整的养老分析系统?《基于大数据的深圳市养老机构信息可视化分析系统》告诉你答案
摘要:《基于大数据的深圳市养老机构信息可视化分析系统》是一款融合Hadoop+Spark大数据技术的综合平台,通过Python/Java双语言开发,采用Django/Spring Boot后端框架与Vue+Echarts前端技术。系统深度分析深圳市养老资源空间分布、机构类型对比、服务能力评估等维度,运用K-Means聚类和词云分析揭示资源分布规律。项目整合HDFS、Spark SQL等技术,将复杂数据转化为直观可视化图表,为政府决策、机构优化和家庭选择提供数据支持,体现了大数据技术在社会民生领域的创新应用价原创 2025-08-05 10:04:11 · 897 阅读 · 0 评论 -
一键获取!基于大数据的农产品交易数据分析系统全套源码+详细文档
本文介绍了一个基于大数据的农产品交易数据分析与可视化系统。该系统采用Hadoop+Spark大数据框架,支持Python(Django)和Java(Spring Boot)双后端版本,结合Vue+ElementUI+Echarts前端技术,构建了覆盖16个核心分析维度的智能平台。系统通过对农产品交易数据的深度挖掘,实现了销售趋势分析、品类交叉销售、区域热力图等关键功能,为农产品生产、销售和政策制定提供决策支持。文章展示了系统架构、技术选型、功能演示和部分核心代码,包括月度销售趋势分析和品类交叉销售分析等模块原创 2025-08-05 01:23:13 · 617 阅读 · 0 评论 -
毕设没思路?基于Hadoop平台的电信客服数据处理与分析系统全流程指南告诉你
《基于Hadoop平台的电信客服数据分析系统》摘要:该系统采用Hadoop+Spark架构处理电信行业PB级客服数据,结合Spring Boot和Vue等技术实现全栈开发。核心功能包括客户流失预测、消费行为分析等模块,通过Spark MLlib进行机器学习建模,预测准确率达85%以上。系统可降低15%-20%客户流失率,提升25%营销转化率,处理速度较传统方案提升10倍。适用于电信企业精细化运营,为高校大数据教学提供实践案例。原创 2025-08-04 21:24:39 · 987 阅读 · 0 评论